

Microcontroller Based

Multichannel Light Dimmer

University of Waterloo
Department of

Electrical and Computer Engineering

E&CE 499 Fourth Year Project
Final Report

for Professor P. Dasiewicz

Apr 7, 2001
Ed Maste
ID #96121900

 i

Summary
The project described in this report is a microprocessor-controlled lighting dimmer that

could be used in theatrical or other applications. The project consists of a physical

hardware prototype and associated firmware to execute on the project's processor.

The report begins with a description of the customer requirements for the project. These

were developed into functional specifications. The report then describes the design

process for the project hardware and firmware. The testing methodology and results are

also included.

It was concluded that the project works as expected and as required in all material

aspects. One of the modes of operation could not be fully tested due to the lack of

available test equipment. It is recommended that further testing be completed and some

minor design issues be rectified if another version of the project was to be built .

 ii

Table of Contents

1. Design Abstract...1
2. Project Plan and Milestones..2

2.1. Design Challenges ..2
2.2. Milestones...2
2.3. Expected and Known Requirements... 3

2.3.1. School Resources..3
2.3.2. Industry Resources..3
2.3.3. Software..3

3. Customer Requirements..5
4. Functional Specifications..6

4.1. AC Power Input .. 6
4.2. Dimmer Channel Outputs...6
4.3. Electrical Safety.. 8
4.4. Control Interfaces..8

4.4.1. RS-232..8
4.4.2. MIDI ...9
4.4.3. DMX512... 10
4.4.4. RS-485..11

4.5. Firmware Functionali ty...11
5. High Level Design..13

5.1. Phase Control ..13
5.2. Hardware Block Diagram...14
5.3. Firmware...15

5.3.1. Phase Angle Controller ...16
5.3.2. Debug / Supervisory and Control Inputs ..16
5.3.3. Supervisory Tasks...16

6. Low Level Hardware Design..18
6.1. Component Selection and Schematic Design ...18

6.1.1. Power Supply..18
6.1.2. Zero Crossing Detector ...19
6.1.3. Output Power Drivers...20
6.1.4. Microcontroller ...20
6.1.5. Debugging UART and TIA/EIA-232 interface..21
6.1.6. MIDI Interface..22
6.1.7. DMX512 and RS485 interface.. 22

6.2. PCB Layout...23
7. Low Level Firmware Design ..25

7.1. Real-Time Phase Angle Control ...25
7.2. Debug / Supervisory UART..29
7.3. Control UART .. 31

7.3.1. MIDI mode..32
7.3.2. DMX512 / RS485 mode...32

7.4. Supervisory Control ..34
8. Assembly and Testing...36

 iii

8.1. Component Acquisition..36
8.2. PCB Fabrication..36
8.3. Prototype Assembly..37
8.4. Hardware Errors..37

8.4.1. UART crystal ground connection...37
8.4.2. UART pinout ..38
8.4.3. Triac pinout...38
8.4.4. Logic gate U9C...39

8.5. Debug UART Testing...40
8.6. Dimmer Testing..41
8.7. MIDI Input Testing...43
8.8. RS485 and DMX512 Input Testing.. 44

9. Conclusions...45
10. Recommendations... 46
11. References...47
Appendix A: Schematics... 48
Appendix B: PC Board Layouts ...52
Appendix C: Annotated Bill of Materials...57

 iv

List of Figures

Figure 1: AC Phase Control ..13
Figure 2: Load Voltage vs. Delay Angle..14
Figure 3: Dimmer block diagram..15
Figure 4: Phase Angle usage of Timer/Counter1..25
Figure 5: Phase Control Comparator Operation ...27
Figure 6: Zero-Cross Interrupt Pseudocode..28
Figure 7: Compare Interrupt Pseudocode...28
Figure 8: Level Setting Pseudocode...29
Figure 9: SPI ISR for UART Communication.. 30
Figure 10: Debug / supervisory high level interface pseudocode.....................................31
Figure 11: Control UART receive ISR pseudocode...33
Figure 12: Supervisory Control Pseudocode..35
Figure 13: UART crystal ground problem..37
Figure 14: Debug UART pinout - (a) correct (b) incorrect ..38
Figure 15: Triac pinout - (a) incorrect (b) correct...39
Figure 16: Triac modification to correct pinout..39
Figure 17: Logic gate U9C - (a) incorrect (b) correct...40
Figure 18: Output voltage vs. control input ..42
Figure 19: MIDI lighting test measure..44

 v

List of Tables

Table 1: Project Milestones ..3
Table 2: Light Quantity by Wattage at The Centre in the Square7
Table 3: Project sponsors.. 36
Table 4: Dimmer voltage test results..42
Table 5: Keystrokes to simulate DMX512 protocol ...44

 1

1. Design Abstract

The Microcontroller based Multichannel Light Dimmer (MMLD) is a microprocessor-

controlled lighting dimmer that could be used in theatrical or other applications. The

project will consist of a physical hardware prototype and associated firmware to execute

on the project's processor.

The device will accept input from a wide range of interfaces: RS232, DMX512 (a

theatrical li ghting standard) or RS485, and the Musical Instrument Digital Interface

(MIDI). The device will control a number of lamps by using some form of AC power

control. The firmware in the microcontroller would handle all functions, from decoding

the protocol on either of the input interfaces through to timing the firing of power triacs

for the output.

 2

2. Project Plan and Milestones

2.1. Design Challenges
The dimmer hardware will present some design challenges due to the large currents it

will be required to handle (up to 15A). This will require careful attention to component

selection, circuit design, printed circuit layout, and assembly technique. The dimmer also

operates with AC mains potential (120V) so careful attention to safety will be required.

The dimmer will have a number of control interfaces, and each of these must be

compliant with relevant standards to ensure interoperabilit y with other equipment.

The dimmer’s firmware has two main aspects: responding to data via its control

interfaces and turning on the output switches at the correct time relative to the AC line

voltage. It is anticipated both of these aspects will present hard real time problems.

Faili ng to process the control data as it arrives will result in the dimmer having incorrect

intensity values on one or more channels, and faili ng to turn on the output drivers at the

correct time will result in erratic or incorrect output voltages. It is anticipated that these

real-time requirements can be met by careful code design and the use of microcontroller

resources (such as timers and interrupts) for dedicated tasks.

2.2. Milestones
Table 1 details each of the anticipated major milestones for the project, including the

target completion date and the actual completion date if the milestone has been

accomplished.

 3

Table 1: Project Milestones

Milestone

Target Date

Status or
Completion Date

Customer Requirements January 15, 2001 January 17, 2001
Functional Specifications January 22, 2001 January 22, 2001
High Level Design January 29, 2001 February 4, 2001
Component Selection February 5, 2001 February 18, 2001
Schematic Design February 12, 2001 March 1, 2001
PCB Layout February 19, 2001 March 11, 2001
PCBs Fabrication February 26, 2001 March 16, 2001
Prototype Assembly March 5, 2001 March 26, 2001
Initial Firmware Complete March 12, 2001 April 1, 2001
Prototype Testing and Verification March 19, 2001 April 20, 2001

2.3. Expected and Known Requirements

2.3.1. School Resources
The project designer has access to work space outside of school so the requirement for

school lab space should be minimal. The labs may be used during the testing and

verification stage for access to equipment such as oscill oscopes.

Should the school’s circuit board milli ng machine be operational, it will li kely be

employed for the fabrication of PCBs for the project.

2.3.2. Industry Resources
It is anticipated that surface mount devices, including fine pitch devices, will be

employed in the design and construction of this project. The hardware lab at Cisco in

Waterloo will be used to solder these parts to the project’s circuit board.

2.3.3. Software
The project will be developed using Open Source or freely available tools, so commercial

software will not have to be purchased. Firmware written for the project’s

microcontroller will be developed in C and complied with GCC, if GCC has support for

 4

the chosen microcontroller. Otherwise, a microcontroller will be chosen that has free

assemblers or compilers available.

 5

3. Customer Requirements

The project shall be an intelli gent lighting controller that will provide automatic control

of the brightness of lamps attached to it, for amateur theatrical or home applications. At

least four independent channels of lighting control shall be provided.

It shall provide standard electrical sockets that these lamps can be plugged into, and will

itself be plugged into a wall socket for power. The project shall operate on (at least) the

AC power supply available in North America.

For household applications, each dimmer channel shall have a power handling capacity to

allow two common table lamps, or one large floor-standing lamp, to be connected. To

allow for theatrical use, each channel shall have a capacity to allow one large or several

smaller theatrical li ghts to be connected. The overall capacity of the dimmer may be

limited to the power available from one standard wall socket.

The project shall be compatible with standard dimmer control interfaces and shall also

allow easy connection to a standard personal computer.

 6

4. Functional Specifications

Based on customer requirements, the functional specifications indicate the scope of the

design and include relevant documentation for all i nterfaces provided by the project.

4.1. AC Power Input
The nominal power supply from a standard AC outlet in Canada and the USA is 120V

alternating current (AC) with a frequency of 60Hz (60 cycles per second). To allow for

variations due to load and other factors, a tolerance of 10% shall be allowed on the

voltage and 5% on the frequency. Thus, the dimmer should operate on 108V to 132V AC

and 57 to 63 Hz.

A standard wall receptacle circuit provides up to 15A of current. Since this dimmer is

intended for home or amateur theatrical use, this is the maximum current the dimmer may

draw. The dimmer’s input shall be fused with a 15A fast-blow fuse. This provides for a

maximum connected load of 1800 watts across all dimmer channels, excluding power

required by the dimmer itself.

4.2. Dimmer Channel Outputs
The dimmer shall provide one standard power receptacle per dimmer channel. The

receptacle type shall be in accordance with the National Electric Manufacturers

Association type 5-15R [1].

 7

Several residential lamps were examined to determine the power handling requirements

of a single dimmer channel. Table lamps mostly used 60W bulbs, with the maximum

being 150W in one fixture. The highest power bulb, at 500W, was found in a floor

standing halogen lamp.

The dimmer should also be useable for amateur theatrical productions. Table 2 provides

a summary of the lights in use at The Centre in the Square in Kitchener [2]. This is a

professional theatre but gives a good indication of the types of lights used for theatrical

lighting. As indicated, almost all of the lights are 1000W or less.

Table 2: Light Quantity by Wattage at The Centre in the Square

Light Wattage Quantity of Lights Percentage of lights at
Wattage or below

500W 6 1.1%
575W 194 37.4%
1000W 321 97.4%
1500W 8 98.9%
2000W 6 100%

Based on the power requirements of these theatrical and home lamps, each dimmer

channel shall be capable of handling 1000W with some margin (which will be

determined by the availabilit y of components). At 120V this represents a current of

8.33A. The dimmer also should not have a minimum load requirement per channel. The

smallest reasonable 120V bulb is a 5W Christmas-tree lamp so this may be taken as a

practical minimum load if desired. Each of the dimmer channels must be individually

fused at a current less than the capabilit y of that channel.

 8

The dimmer must be able to vary the brightness of lamps connected to each channel by

changing the average or RMS power delivered to the lamp. The controllable range

should be as wide as possible, but should be at least 10% to 90%. Phase control [3] will

be used to vary the applied RMS voltage.

The dimmer should incorporate electrical interference filtering components so that it does

not adversely affect other electronic equipment.

4.3. Electrical Safety
Because of the high voltages (AC mains potential) used in the dimmer and for the

channel outputs, the dimmer must adhere to electrical safety guidelines. Galvanic

isolation must be provided between any component connected to the AC line and the rest

of the circuitry and interfaces that are not. Any devices used to provide such isolation

shall have an isolation rating of at least 2000 volts. Creepage and clearance distances on

the PCB shall be at least 0.125 inches to ensure adequate isolation.

4.4. Control Interfaces

4.4.1. RS-232
In order to provide easy interfacing with a standard personal computer, as indicated in the

customer requirements, an RS-232 port shall be provided on the dimmer. This is the type

of port commonly referred to as a “serial port” on a PC. RS-232 is more correctly called

TIA/EIA-232-F and actually specifies only the physical layer electrical interface [4], but

in common usage it also indicates that asynchronous serial data is being transmitted and

received, at one of many standard baud rates.

 9

No requirement for the protocol used by the RS-232 interface has been set; therefore a

simple menu based system will be used to allow system configuration and setting dimmer

channel values. The baud rate will be 38 400 bits per second which should allow menus

to be displayed at a reasonable speed. (A menu with 10 lines of 40 characters each would

take 40 * 10 / (38 400 / 10) seconds, or roughly 100 milli seconds.)

The RS-232 port shall also be used for debugging and initial system testing. In order to

facilit ate debugging of the other control interfaces, the RS-232 port must operate

independently of, and concurrently with, the other interfaces.

The RS-232 connection shall use a female DB-9 connector, allowing a connection to a

personal computer via a “straight-through” serial cable.

4.4.2. MIDI
The Musical Instrument Digital Interface (MIDI) is a specification describing a protocol

and electrical interface, and is typically used by electronic musical instruments. The

dimmer shall be controllable by MIDI data in order to allow the dimmer to be used in

performances by electronic musicians.

The dimmer should respond to MIDI standard “note on” and “note off ” messages. MIDI

“note on” messages contain a velocity (volume) level; this will be interpreted as a

dimmer channel brightness setting. The dimmer should be able to be configured to

receive one MIDI channel and have a different note number assigned to each of the four

channels.

 10

MIDI specifies that asynchronous serial communication is used at a baud rate of 31 250

bits per second [5], and the data is transmitted via a current loop. Current flowing in a

MIDI connection corresponds to the active, or space, state. An absence of current

indicates an idle, or mark, state. The MIDI interface will use standard female five pin

DIN connectors and provide optical isolation on the receive channel [6]. MIDI data shall

be received on a MIDI In port, and this shall be passed through to a MIDI Thru port to

allow daisy chaining with other devices. A MIDI Out port may also be included although

at this time it is not anticipated that the dimmer will generate its own outgoing MIDI

data.

Use of the MIDI interface may be mutually exclusive with use of the other interfaces

(with the exception of the RS-232 interface).

4.4.3. DMX512
A very common interface and protocol in theatrical li ghting is DMX512 [7], which

specifies how data is carried from lighting controllers to dimmers and light fixtures. It

allows up to 512 individual dimmer channels to be controlled by one control cable.

DMX512 specifies asynchronous serial data transmitted at a rate of 250 000 bits per

second using eight bits per byte, two stop bits and no parity. The data is transmitted

using a balanced scheme, electrically equivalent to RS-485. Male five pin XLR

connectors are used for input and female five pin XLR connectors are used for output.

 11

DMX512 also specifies the low level protocol used on the interface. A serial “break” is

transmitted for at least 88 uS followed by at least 8 uS of idle (mark). A start code of

0x00 is then transmitted, followed by up to 512 eight-bit dimmer intensity values.

Use of the DMX512 interface may be mutually exclusive with use of the other interfaces,

except for RS-232.

4.4.4. RS-485
Since DMX512 is electrically equivalent to RS-485, an RS-485 connection may easily be

provided on the dimmer via screw terminals. RS-485 specifies the use of a balanced

interface with two data signals that are identical except for polarity [8]. This allows for a

high degree of noise immunity when compared to more common serial interfaces such as

RS-232. The data rate and protocol used on the vanill a RS-485 interface does not need to

be defined and the interface may be provided for future capabilit y only. Use of the RS-

485 interface may be mutually exclusive with use of the other interfaces except for RS-

232.

4.5. Firmware Functionality
The firmware has three functional tasks: system configuration, receiving protocol data,

and controlli ng the output power drivers.

The system configuration system operates over the RS-232 interface and must allow the

user to choose which of the control interfaces the dimmer will respond to. As well , any

parameters for the specific control interface must be user settable. The MIDI interface

 12

requires that the MIDI channel and note numbers be settable, while the DMX512

interface requires that each channel can be assigned to a dimmer number.

The firmware must receive and process protocol data on the selected interface, and

interpret that data within the time taken to transmit the following control message.

The firmware must monitor the AC line zero crossing to determine when to turn on the

output drivers and then activate them at the appropriate time.

 13

5. High Level Design

5.1. Phase Control
The dimmer will use the technique of AC phase angle control, where the output loads are

turned on for a portion of the total AC line sinewave period, as shown in Figure 1. If the

loads are turned on at the beginning of the AC cycle, they will receive approximately the

full power available from the AC line. If they are not turned on during an AC cycle, they

receive no power. If the loads are powered for some portion of an AC line cycle, they

will receive a corresponding portion of the total available power.

Off Off OffO n On

AC L ine Resul tant
Wave fo rm

V
ol

ta
ge

C
on

tr
ol

Time

Figure 1: AC Phase Control

We define α as the phase delay between the AC line zero-crossing and the instant the

output channel is turned on. The range on α is then zero to 180 degrees, with 0 degrees

corresponding to full power an 180 degrees corresponding to zero power. The average

and RMS voltage applied to the load, as a function of delay angle, appears in Figure 2

[9].

 14

Figure 2: Load Voltage vs. Delay Angle

Clearly, the applied voltage to the dimmer’s loads can be varied from essentially zero to

100% of the supply voltage by changing the delay angle.

5.2. Hardware Block Diagram
The block diagram for the dimmer appears in Figure 3. The criti cal component in the

dimmer is a microcontroller. A microcontroller provides a low-cost method to easily

implement the required functionality of the dimmer. It can simultaneously process input

from any of the required control inputs, and control the power electronics for the

individual channels. The microcontroller uses the input from an optically isolated zero

crossing detector to determine how much time to delay before turning on individual

channels.

 15

Power
Dr iver

Power
Dr iver

Power
Dr iver. . .

Optical
Isolator

Opt ical
Isolator

Opt ical
Isolator

Opt ical
Isolator

Zero Cross ing
Detector

Isolat ion
Barr ier

Power
Supply

Channel 1 Channel 2 Channe l N

RS232 MIDI RS485

Level
Shif ter

RS485
Transceiver

Opt ical
Coupler

Microcontrol ler

U A R T

IN THRU IN THRU

D M X 5 1 2
OUT

R
x

ZC Detect

T
x

Electrically
Control led

Switch

Rx Tx
S

P
I

T
x E

nable

Int

I /O I/O I/O

I/O I/O

C
ry

st
al

Switch

Terminat ion

I/O

Figure 3: Dimmer block diagram

5.3. Firmware
The firmware has three main tasks. The primary task is the real-time phase angle control

of the output circuits relative to the AC line zero crossing. In addition, it must process

intensity messages on the various control inputs. Finally, it has to handle system

 16

configuration and management tasks (such as selecting which input is active). It is

intended that each of these functions be implemented as autonomous modules and be

primarily interrupt-driven to avoid the downsides of polli ng schemes.

5.3.1. Phase Angle Controller
As mentioned, the dimmer will be based on a microcontroller. Most microcontrollers

include timers and external interrupt capabiliti es. Many microcontroller timers provide

compare and capture functionality, often providing a mode where a specified action can

occur once the timer increments to a certain value. The phase angle control system will

make use of these interrupt-driven resources to provide real time TRIAC firing without

burdening the processor.

5.3.2. Debug / Supervisory and Control Inputs
All communications between the dimmer and external devices will be via one of two

serial ports. One serial port (UART) is dedicated to debug and supervisory tasks and will

be implemented as an RS232 port, while normal MIDI and DMX/RS485 communications

can share another UART. A software-settable control signal should be provided to

facilit ate the switching between the two uses of the one UART. Both of these UARTs

should be completely interrupt driven to reduce the burden on the processor.

5.3.3. Supervisory Tasks
The dimmer requires some supervisory control, which will be implemented via a menu

on the debug and supervisory RS232 port. The supervisory tasks include the selection of

the active control mechanism (MIDI, DMX512 etc.) and system configuration (such as

enabling or disabling line termination). In addition, intensity control data will be

accepted on the supervisory and debug port to allow for system testing and personal

 17

computer (PC) control. The supervisory and debug port should provide some

acknowledgement after receiving a request so that any associated control software can

determine that the dimmer is still connected and operational.

 18

6. Low Level Hardware Design

The hardware design began with the selection of components for the power supply, zero

crossing detector and output drivers. The component selection and design process will be

described in the following sections. Component designators (i.e. U3 or R7) refer to the

schematics in Appendix A.

6.1. Component Selection and Schematic Design

6.1.1. Power Supply
The dimmer is to be a self-contained unit and thus requires a power supply to provide low

voltage DC for its electronics from the AC power line. Because the current requirements

of the dimmer’s circuitry will be quite low, a standard linear topology was chosen. The

components used in the dimmer will be standard, conventional parts that will use a

supply voltage of 5V. These specifications dictate the use of a low-cost, ubiquitous linear

regulator -- the National Semiconductor LM7805 [10] as U3. The LM7805 requires an

input voltage of at least 7.5V in order to guarantee regulation, so the unregulated power

supply should supply at least this voltage under worst-case current consumption, assumed

to be about 200mA.

Because a full -wave bridge rectifier will be used for eff iciency (diodes D1-D4), we can

assume that about 1.4V will be lost across the bridge (0.7V per conducting diode). We

therefore need a peak voltage of at least 9V from the power transformer. Because the

RMS voltage of a sinusoidal AC signal is 0.707 times the peak, a power transformer with

a 6.3V RMS secondary is required. A Tamura Corporation 3FS-312 transformer was

selected as T1, which has a 6.3V RMS secondary at 400 mA [11].

 19

6.1.2. Zero Crossing Detector
In order for the dimmer to determine at which point on the AC cycle to turn on individual

channels, it needs a reference for the AC zero crossing. For safety reasons this zero

crossing detector must be isolated from the low voltage electronics. This isolation can be

achieved at low cost with an optoisolator, a component which uses light to provide

galvanic isolation. Typically, a light emitting diode (LED) will be used as the light

source and a light sensitive transistor as the receptor.

U5 is the optoisolator used as the zero crossing detector and is a 6N138 from Fairchild

Semiconductor. It uses a darlington (dual transistor) output stage for high gain, providing

a current transfer ratio (CTR) of typically 2000%. That is, the output current changes by

200 times the change in input current. The part is therefore useful for directly driving

logic level inputs. The typical input parameters are: forward voltage VF=1.30V, forward

current IF = 1.6mA. The maximum forward current is 20mA.

The zero crossing detector works by first full -wave rectifying the AC line using diodes

D5, D7, D8 and D16. Full -wave rectifying before the zero crossing detector guarantees

that the output waveform at the loads will be symmetric in the positive and negative half

cycles, which is important for powering some types of loads such as transformers. This

produces positive-going half-sinewave pulses at 120Hz. The peak voltage is

VV 1702120 =× . By using 20K of series resistance, basic Ohm’s law determines the

maximum current through the optoisolator to be mAVV
R

VI 5.820000
4.1170 =Ω

−== .

The AC line voltage at which the optoisolator is guaranteed to be on is

 20

VkmAIRV 32206.1 =Ω×== . This point on the sinewave corresponds to

() °=− 11170
321

V
VSin . In practice, the optoisolator will probably turn on much earlier.

6.1.3. Output Power Drivers
Triacs Q1-Q4 are used as the output drivers due to their low cost, small size and

ruggedness. The BTA216X-600B device from Phili ps Electronics was chosen, due to

some excellent characteristics. It comes in a fully-isolated package, which makes

heatsinking easier and safer. It is also a so-called “snubberless” triac. Most triac circuits

require a resistor-capacitor (RC) snubber to prevent false triggering when driving certain

types of loads. The Phili ps snubberless triac is very resistant to this false triggering due

to its design. (The schematic has provisions for such a snubber as a contingency if the

Phili ps parts could not be obtained in time.) The BTA216X-600B is rated for 16A which

easily allows for the 1000W per channel power requirement.

In order to provide isolation and ease triggering of the triacs, MOC3011 optoisolators

(Fairchild Semiconductor) are used. These are designed to directly drive a triac’s gate

input, and the output circuits are basically copies of Fairchild’s application note [ref!].

6.1.4. Microcontroller
The heart of the dimmer is U7, an Atmel AT90S8515 microcontroller. This

microcontroller was chosen for several reasons. The project designer has extensive

experience with the AVR series, as well as development tools for the parts. The GNU

Compiler Collection (GCC) targets the AVR as a cross-compiler, allowing the project to

be developed in C. The part also has eight kilobytes of f lash memory for program

storage, allowing for reasonably sized programs to be loaded. The AVR series is also in-

 21

circuit programmable which eases the development cycle and allows for incremental

firmware design. U7 runs at 8MHz, a frequency determined by crystal Y1.

The ‘8515 has some additional features beyond other members of the AVR series. It

provides two external interrupt sources, one 16 bit and one 8 bit timer, a built -in UART,

and a synchronous peripheral interface (SPI) serial port. One of the interrupts is triggered

by the zero crossing detector. The 16 bit timer has an interrupt on compare match mode,

and can be used for controlli ng the output turn-on point. The built -in UART is dedicated

to receiving and transmitting on the control interfaces (MIDI or RS485/DMX512).

Finally, the SPI port is connected to a separate UART, to provide a serial port for

debugging.

6.1.5. Debugging UART and TIA/EIA-232 interface
The dimmer design includes an external UART in order to ease the bring-up (initial)

phase and allow for debugging of the dimmer, even when the internal UART is being

used for the control interfaces. The UART is U8, a MAX3100 from Maxim Integrated

Products. Crystal Y2 provides a 3.6864MHz reference for U8. This frequency is chosen

as it is an integer multiple of the baud clock required for standard asynchronous

communications (e.g. 9600 baud or 57600 baud).

U10 is another Maxim part, a MAX202. This part converts transistor-transistor logic

(TTL) signal levels to the bipolar voltage swings required by the TIA/EIA-232 interface.

It has a built -in switched capacitor voltage convertor to generate the necessary +/- 10V

supplies.

 22

6.1.6. MIDI Interface
The dimmer can receive control data via a MIDI interface, to allow it to be used by

electronic musicians and controlled by existing musical gear. The MIDI interface

consists of a 6N138 optoisolator (U13), and a 74VHC125 quad buffer (U9). MIDI

specifies an isolated current loop interface, which is most easily accomplished with an

optoisolator. The logic output of U13 is buffered by U9A, where it is made available to

U11, a 74VHC157 quad two-to-one multiplexor. This multiplexor allows the

microcontroller’s internal UART to be connected to either the MIDI interface or the

RS485/DMX512 interface, depending on the state of the SERSEL signal.

The MIDI input is passed to buffer U9B to provide a “MIDI Thru” connection, to allow

daisy-chaining of additional gear. The microcontroller’s UART transmit signal is

buffered by U9C to provide a “MIDI Out” connection. The dimmer will not make use of

this connection at this time; it is provided only to allow for future expansion.

6.1.7. DMX512 and RS485 interface
DMX512 is simply an RS485 interface at the electrical level so these two control

interfaces will share the same hardware. They will differ only in the connector used and

protocol details. These interfaces will be collectively referred to as the “RS485

interface.”

The RS485 interface is based on a Maxim MAX487 transceiver. The MAX487 converts

between TTL level serial signalli ng and balanced RS485 levels. The MAX487 can both

convert TTL to RS485 and convert RS485 to TTL, depending on the state of two control

signals, DE and RE. DE enables the transmit portion (TTL to RS485) of the component,

 23

and is connected to the microcontroller. In the current project this signal will not be used

because the RS485/DMX512 port is a receiver only. The RE signal enables the receiver

portion of the component, and is connected to ground; the receiver is permanently

enabled.

Because RS485 and DMX512 specify a balanced, controlled impedance cable,

termination is required at the endpoints of the network. To simpli fy installation and

preclude the necessity of separate terminator plugs, the dimmer incorporates software

controllable termination. 120 Ohm resistor R32 matches the characteristic impedance of

the cabling specified for RS485. Relay K1 connects this resistor across the RS485 bus

when the TERMEN signal is high, indicating that termination is desired.

6.2. PCB Layout
Due to safety concerns and the high voltages and currents involved in the dimmer project,

a printed circuit board (PCB) will be required. Any sort of prototype construction would

likely be too fragile (allowing a user to be exposed to high voltages) or not robust enough

to withstand the high currents.

The circuit board places all of the high voltage components along one side of the board

and the low voltage components over the rest of the board area. The only components

allowed to bridge the two areas are the isolation components (optoisolators and

transformer). A red line 0.125 inches wide is drawn across the board indicating the gap

between the high voltage and low voltage sections, and to indicate the required clearance

distance for safety regulations.

 24

A standard copper thickness on PCBs is 1.5oz (0.5oz of copper and 1.0oz of plating).

Using these thicknesses, and allowing a 20 degree Celsius temperature rise, an online

trace width calculator [12] suggested a minimum trace width of 235 Mils (0.235 inches).

For this reason all of the high current traces on the PCB design are approximately one

quarter inch wide (250 Mils) or more.

The PCB layouts appear in Appendix B of this report.

 25

7. Low Level Firmware Design

7.1. Real-Time Phase Angle Control
The primary task of the firmware is the real-time phase angle control. This firmware

module must perform three tasks: calculating the delay between zero-crossing and

TRIAC turn-on, turning on the triac at the appropriate point in the AC cycle, and turning

off all triacs at the AC line zero-crossing.

The microcontroller’s 16-bit “Timer/Counter1” is used for timing the turn-on points for

each of the four output triacs. The timer’s clock source can be set to one of many inputs,

including the processor’s clock or external inputs. The timer is incremented on each

clock edge. The microcontroller’s clock will be used as the timer’s clock source, so that

the timer count will i ncrement at a constant rate. In addition, the zero-crossing edge

interrupt will reset the count to zero, resulting in a count value that starts at zero on each

AC line zero crossing and increments throughout the AC half-cycle. This is shown in

Figure 4.

AC L ine

V
ol

ta
ge

C
ou

nt

Zero Cross
Interrupt

t ime

T imer1

Figure 4: Phase Angle usage of Timer/Counter1

 26

The microcontroller’s clock can be prescaled (divided) by certain powers of two between

one and 1024 before being routed to Timer/Counter1. Since the dimmer’s specifications

require it to work with a frequency of 60Hz ± 5%, the maximum period is

mS
Hz

TP 5.17
%560

1 =
−

= . Thus, one AC line half-cycle has a duration of 8.77 mS. The

8 MHz clock of the microcontroller has a period of 125 nS, so there are at most 70175

clock cycles per AC half cycle. Timer/Counter1 is a 16 bit timer, so it has a maximum

value of 65535. If the microcontroller’s clock was not prescaled before being routed to

Timer/Counter1, the count value would overflow within the AC half-cycle, which is not

acceptable. The next-smallest division ratio is by eight, so that value will be used. The

terminal count of Timer/Counter1 (at 60 Hz – 5%) is then

8772

8
8000000

1
77.8 =÷=

MHz
mSCountTerm , and at the nominal 60 Hz the terminal

count is 8333.

The timer has two compare registers associated with it, known as Timer/Counter1 Output

Compare Register A and B. The microcontroller has two 16-bit comparators, which

continually compare the Output Compare Registers with the current value of

Timer/Counter1. Several actions can be performed by the hardware on a match,

including the generation of an interrupt, or changing the state of a port pin.

The phase angle control module uses the interrupt generation capabilit y. The compare

match interrupt service routine (ISR) is responsible for taking any action required at the

instant of a match. Initially, the comparison value is set to the count at which the triac

 27

should turn on. An interrupt is generated when the Timer/Counter1 count equals this

value, which occurs at time (a) in Figure 5. The Compare ISR would then set a port pin

to turn on the triac, and reset the compare value so that the next interrupt occurs just

before the end of the half-cycle. At time (b) in Figure 5 the Compare ISR again executes,

and clears the port pin to turn off the triac. The compare register is reloaded with the

turn-on value, and the cycle repeats.

AC L ine

V
ol

ta
ge

Zero Cross
Interrupt

T imer1

0

8000

C
ou

nt

Compare

 time

Compare
Interrupt

(a) (b)

Figure 5: Phase Control Comparator Operation

This procedure can be extended for additional channels. By sorting the turn-on

comparison counts, the ISR simply has to switch on the appropriate triac in the sequence

and reload the comparison register with the next value in order.

The intensity control structures will be held in global variables. In order to avoid a race

condition, all of the ordered compare values must be updated at the beginning of the

 28

cycle. This leads to the zero-cross ISR pseudocode and global variables shown in Figure

6.

struct
{
 integer time
 integer port_setting
} intensity_data;

intensity_data new_intensity_data[5]
intensity_data cur_inten sity_data[5]
boolean g_update_intensity_data = false

ZeroCrossISR()
{
 TimerCounter1_value = 0;
 if (g_update_intensity_data)
 {
 copy (new_intensity_data, cur_intensity_data)
 }
 CompareValue = cur_intensity_data[0].time
}

Figure 6: Zero-Cross Interrupt Pseudocode

The compare interrupt then becomes quite simple. On each compare match, the next

port_setting is written to the triac output port, and the CompareValue is set to

the next time value. If the port_setting corresponds to turning off all channels, the

current_step is set back to 0 in preparation for the next half-cycle. This results in

the ISR pseudocode and one additional global variable as shown in Figure 7.

integer current_step = 0
CompareISR()
{
 TriacOutputPort = cur_intensity_data[current_step].port_setting
 if (port_setting == all_channels_off)
 {
 current_step = 0
 } else {
 current_step = current_step + 1
 }
 CompareValue = cur_intensity_data[current_step].time
}

Figure 7: Compare Interrupt Pseudocode

 29

The only remaining task for the dimmer firmware module is to compute the

intensity_data structures based on the desired channel intensities. The minimum

intensity occurs when the channel is not turned on at all , while the maximum intensity

occurs when the channel is turned on right after the AC zero-crossing. Thus, lower

compare values correspond to greater intensities. Given an 8-bit intensity value and a

Timer/Counter1 terminal count of 8000, the delay before turning on a given channel is

calculated as 




 −=

256
18000

intensity
TurnOnTime . The dimmer firmware module provides

a set_levels function to perform this calculation. Once the delay is calculated for

each channel, the delays must be sorted from earliest to latest. In addition, to simpli fy the

comparison ISR, channels having the same intensity (and thus the same delay) should be

coalesced into one. The pseudocode appears in Figure 8.

integer intensity[4];

set_levels()
{
 for (i = 0 to 3)
 {
 new_intensity_data[i].time = 8000 – (8000 * intensity[i] / 256)
 new_intensity_data[i].port_setting = set_bit(i)
 }
 sort_data (new_intensity_data[])
 coalesce_data (new_intensity_data[])
 last_element(new_intensity_data[]).time = 8000
 last _element(new_intensity_data[]).port_setting = all_channels_off
}

Figure 8: Level Setting Pseudocode

7.2. Debug / Supervisory UART
As indicated the hardware description, an external UART is provided for debug and

supervisory tasks. This UART communicates with the microcontroller via the serial

peripheral interface (SPI) bus, a synchronous serial bi-directional bus. The Atmel AVR

 30

microcontroller has built -in hardware support for the SPI bus, simpli fying the task of

communicating with the UART. The SPI hardware generates an interrupt after

transmitting and receiving eight bits. The driver for the external UART uses two circular

buffers for receiving and transmitting data on the debug / supervisory port. The SPI

interrupt initiates a dummy write if no data is available to be transmitted, or sends the

appropriate character if any is. As well , if a character was read during the transaction it is

enqueued on the receive buffer.

Simpli fied pseudocode for the UART driver appears in Figure 9. The actual driver is

somewhat more complex because the UART uses 16 bit words, requiring two SPI

transfers per character.

circular_buffer rs232_tx
circular_buffer rs232_rx

SPI_ISR()
{
 word spi_in, spi_out
 spi_in = read (spi_ data_register)
 if (rx_flag_is_set (spi_in) AND NOT (is_full (rs232_rx)))
 {
 rs232_rx.enqueue (data_byte (spi_in))

}
if (byte_available (rs232_tx))
{
 spi_out = transmit_byte (rs232_tx.dequeue())
} else {
 spi_out = dummy_write
}
write (spi_data_re gister, spi_out)

}

Figure 9: SPI ISR for UART Communication

The debug / supervisory ISR is not responsible for processing the incoming data; instead,

it simply places received data in a buffer and takes data to transmit from a buffer.

 31

Standard functions are provided to interact with these buffers. Their pseudocode appears

in Figure 10.

// print out a character
rs232_putc(char c)
{
 while (rs232_tx.is_full())

{
 do_nothing
}

 rs232_tx.enqueue(c)
}

// re ad in a character
rs232_getc()
{
 while (rs232_rx.is_empty())
 {
 do_nothing

}
return (rs232_rx.dequeue())

}

// is a character available
rs232_hasc()
{
 return (NOT rs232_rx.is_empty())
}

Figure 10: Debug / supervisory high level interface pseudocode

7.3. Control UART
The interface to the control UART is rather simple, because the UART is built -in to the

microcontroller. It provides an interrupt when a character is received, and when the

UART is available for a character to be transmitted. Since both MIDI and DMX512 are

unidirectional protocols as far as the current scope of the dimmer project is concerned,

the transmit capabiliti es of the internal UART will not be used.

 32

Unlike the debug / supervisory UART, the receive interrupt is responsible for processing

the incoming data according to the protocol associated with the selected control input.

The pseudocode for the UART receive interrupt appears in Figure 11, and the two modes

of operation are described below.

7.3.1. MIDI mode
The MIDI mode requires the UART to be set to 31250 bits per second. MIDI consists of

status bytes and data bytes, which are distinguished by having bit seven set or cleared

respectively. The status byte indicates the MIDI channel and message type, while the

data byte(s) indicate the data associated with that message. The dimmer responds to key

down and key release messages. Key down messages are sent when a note is started, and

consist of the note number (each pitch is assigned a unique number) and the velocity, or

volume. The dimmer interprets the note number (modulo four) as the dimmer channel,

and the velocity as the intensity. This allows standard music composition packages to

control the dimmer. MIDI provides no error checking data.

7.3.2. DMX512 / RS485 mode
DMX512 is a unidirectional protocol using a serial interface at a speed of 250 000 bits

pre second (or 0.25 Mbps). The RS485 protocol adopted by the dimmer will be identical

to the DMX512 protocol, except that the baud rate will be 19 200 bits per second to make

it compatible with standard terminal software. The protocol consists of a break signal

(continuous active, or space, state on the serial li ne) followed by a mark (idle) state. A

start code is then transmitted which indicates the format of the following data bytes. A

start code of zero indicates that 8-bit intensity data follows. In this case, zero or more

intensity values are transmitted as single bytes, corresponding to global dimmer channels

 33

zero through n-1 where n is the number of bytes transmitted after the start code. Once the

n bytes are transmitted, a new break signal can be transmitted to begin the next update.

The DMX512 protocol includes no error checking data.

UART_RX_ISR()
{
 character c = UART_rx_byte()

 i f (serial_mode == MIDI)
 {
 midi.process(c)
 if (midi.channel == DIMMER_MIDI_CHANNEL)
 {
 if (midi.message == KEY_DOWN)

 {
 intensity[midi.keynumber MOD 4] = midi.velocity

 }
 else if (midi.message == KEY_UP)
 {
 intensity[midi.keynumber MOD 4] = 0
 }

 }
 }
 else if (serial_mode == DMX512 OR serial_mode == RS485)
 {
 if (UART_rx_break_detected)
 {
 dmx_active = FALSE
 dmx_channel = - 1
 }
 else
 {

 if (dmx_channel = - 1)
 {
 if (c == 0)
 {
 dmx_active = TRUE
 }
 }
 }

 dim mer_channel = dmx_channel – DMX_START_CHANNEL
 if (dmx_active AND 0 <= dimmer_channel <= 3)
 {
 intensity[dimmer_channel] = c
 }
 dmx_channel = dmx_channel + 1
 }
}

Figure 11: Control UART receive ISR pseudocode

 34

7.4. Supervisory Control
The final aspect of the dimmer firmware is the supervisory control code. It is responsible

for initializing the hardware, allowing the user to choose and configure the desired

control input, configuring the hardware, and setting intensity values for manual testing or

direct computer control.

After initializing and displaying a menu, the control firmware waits in an infinite loop,

polli ng for either a received character or a zero-crossing. If a zero-crossing is detected,

the dimmer firmware’s set_l evels function is called to update and sort the intensity

data.

If a character is detected, it is read in and processed according to the simple menu

scheme. Sending a “0” through “3” indicates that the intensity value for that given

channel will follow as a two-digit hex value. Other single characters are assigned

configuration tasks as indicated in the pseudocode of Figure 12. Sending a “m” or a “d”

followed by a two-digit hex value configures the MIDI channel or DMX starting channel

respectively.

 35

main ()
{
 initialize_hardware()
 display_menu_and_config()
 rs232_putc (‘>’)
 do_forever

{
 if (rs232_hasc())
 {
 c = rs232_getc()
 if (c == ‘t’)
 {
 toggle_termination()
 }
 else if (c == ‘c’)
 {
 select_next_c ontrol_input()
 }
 else if (c == ‘0’ to ‘3’)
 {
 intensity[c] = get_hex_value()
 }
 else if (c == ‘d’)
 {
 DMX_START_CHANNEL = get_hex_value()
 }
 else if (c == ‘m’)
 {
 MIDI_CHANNEL = get_hex_value()
 }
 else if (c == ‘?’)
 {
 display_menu_and_config()
 }
 rs232_putc (‘>’)
 }
 if (zero_cross_occurred())
 {
 set_levels()
 }
 }
}

Figure 12: Supervisory Control Pseudocode

 36

8. Assembly and Testing

8.1. Component Acquisition
The bill -of-materials for the dimmer circuit assembly along with the bill -of-materials for

the complete project appear in appendix C. Each component indicates the source, and the

price (estimated and actual) if it was not available as a sample. Most of the components

required for the dimmer were obtained as samples from various manufacturers or their

representatives. The project designer greatly appreciates the support of these companies,

which are listed in Table 3 along with their contributions.

Table 3: Project sponsors

Company Contribution
Atmel
Clarsand Ltd.

Microcontroller samples

Cisco Systems (Waterloo) Lab space and equipment for surface mount
soldering

Fairchild Semiconductor
Candian Source Corporation

Optocoupler samples

Keystone Electronics
EMX Enterprises

Screw terminals

Kingbright LEDs Surface mount LEDs
Maxim MAX3100 UART

MAX202 level shifter
MAX487 RS485 transceiver

Mill -Max Surface mount PLCC sockets
ON Semiconductor Logic IC samples
Phili ps Semiconductors
Tech-Trek Limited

Triac samples
Logic IC samples

Samtec Surface mount 0.1” headers

8.2. PCB Fabrication
It was originally intended that the printed circuit board (PCB) for the project would be

fabricated by the Electrical and Computer Engineering department’s PCB milli ng

machine. However, attempts to obtain access to the machine to produce the circuit board

 37

proved unsuccessful and an external quick turnaround PCB fabrication company (Alberta

Printed Circuits) was employed instead. This dramatically increased the cost of this

portion of the project. However, it resulted in having a professionally produced circuit

board in a short period of time. A high quality board is important, considering the high

currents and voltages involved in this project.

8.3. Prototype Assembly
The prototype circuit board was hand assembled at Cisco Systems of Waterloo and at the

author’s home. The small surface-mount circuit components (such as some integrated

circuits, resistors and capacitors) were soldered at Cisco using the advanced soldering

equipment there. Larger components such as the triacs and other through-hole parts were

assembled at home.

8.4. Hardware Errors
During assembly and subsequent initial testing, several hardware design errors became

apparent. These were all schematic-entry issues, and not higher level design issues.

Each of the errors is described below.

8.4.1. UART crystal ground connection
Due to the use of an incorrect ground symbol, the ground for the UART’s crystal and

associated capacitors (Y2, C13 and C14) was not connected to the global circuit ground.

This was corrected by adding a jumper wire to the proper ground, as shown in Figure 13.

Jumper

Y2

3.6864

1
2

3

C13

33p

C14

33p

Figure 13: UART crystal ground problem

 38

8.4.2. UART pinout
Initially a surface mount UART was to be used as the debug UART. However, this part

could not be obtained before the circuit board was sent out for fabrication, so a through

hole dual inline package (DIP) part was substituted. Unfortunately, the surface mount

part includes two extra pins, which are not to be connected externally. When the part was

changed to a DIP part, these pins remained and the actual UART had fewer pins than its

socket. In addition, the RX and TX pins in the component library were reversed. These

issues were resolved by cutting the incorrect copper PCB traces with a knife, and

soldering jumper wires on to make the correct connections. The incorrect and correct

pinouts are shown in Figure 14.

+5V

Debug UART
C12

100n
U8

MAX3100xEE

DIN
1

DOUT
2

SCLK
3

CS
4

IRQ
6

SHDN
7

G
N

D
8

X2
9X1
10

CTS
11RTS
13

RX
15

TX
14

V
C

C
16

+5V

Debug UART
C12

100n
U8

MAX3100xEE

DIN
1

DOUT
2

SCLK
3

CS
4

IRQ
5

SHDN
6

G
N

D
7

X2
8X1
9

CTS
10RTS
11

RX
12TX
13V

C
C

14

(a) (b)

Figure 14: Debug UART pinout - (a) correct (b) incorrect

8.4.3. Triac pinout
Due to a misinterpretation of the triac’s datasheet, their pinout was also incorrect, as pins

1 and 2 were swapped as shown in Figure 15.

 39

(a) (b)

Q1

BT216X

1
2

3

Q1

BT216X

2
1

3

Figure 15: Triac pinout - (a) incorrect (b) correct

The resolution for this issue was to carefully bend the pins, such that the triac’s actual pin

1 went into the pin 2 hole in the circuit board, and pin 2 went into the pin 1 hole, as

indicated in Figure 16.

Figure 16: Triac modification to correct pinout

8.4.4. Logic gate U9C
Logic gate U9C in the MIDI output section of the schematic was placed backwards, with

the input and output connections reversed. Figure 17 shows both the incorrect

connections as implemented in the PCB and the desired connection. To fix this problem,

pins 8 and 9 need to be li fted from their associated copper pads on the PCB, and small

jumper wires soldered in to make the correct connection.

 40

MIDITX

MIDITX

From
MicrocontrollerTo MIDI

Output

From
MicrocontrollerTo MIDI

Output

(a)

(b)

U 9 C

7 4 H C 1 2 5

9 8

10

R 2 7

2 2 1 R

12

R 2 7

2 2 1 R

12

U 9 C

7 4 H C 1 2 5

98

10

Figure 17: Logic gate U9C - (a) incorrect (b) correct

8.5. Debug UART Testing
After the hardware issues were corrected, the debug UART driver was implemented and

tested. It was important to have the debug UART operational at an early stage in order to

facilit ate the completion of the rest of the design.

Initially the debug UART worked in the transmit direction but not the receive direction.

The hardware connects the UART’s IRQ output to one of the general purpose external

interrupts on the microcontroller; the original intent was that the ISR for the external

interrupt could initiate a receive or transmit sequence only when the UART required

service. However, it was found that the UART would keep the IRQ asserted even after

the byte was read from it. In order to get the debug UART working quickly and reliably,

the external interrupt was disabled, and the SPI interrupt rewritten so that as soon as one

transaction with the UART completes another one is started.

 41

With this new driver, the UART seemed reliable. A short test program was written and

linked with the UART driver that would echo back received characters after a variable

delay. This worked properly indicating that the transmit and receive functionality

worked and that the debug UART buffers were operational.

8.6. Dimmer Testing
The next dimmer module to be verified was the output drivers and control section. To

test the dimmer functionality a small program was written to receive four sets of hex

values over the debug UART and then set the intensity values for each of the four

channels. A desk lamp was connected to each channel in turn and it was verified that the

brightness monotonically increased with increasing values.

The next step in the testing involved connecting a 100W load to the first dimmer channel,

and applying incrementing values to the dimmer. After each new value was set, the

voltage at that channel’s output was measured with a Fluke model 12 multimeter. In

additionl, the voltage supplied to the dimmer, measured at the outlet it was plugged into,

was 114V. The measured data is recorded in Table 4

 42

Table 4: Dimmer voltage test results

Setting Percent
Full Scale

Measured
Voltage

Percent
Full Scale

0x00 0.0% 0 0.0%
0x10 6.3% 1.923 1.7%
0x20 12.5% 6.72 5.9%
0x30 18.8% 12.96 11.4%
0x40 25.1% 20.8 18.2%
0x50 31.4% 30.06 26.4%
0x60 37.6% 40.47 35.5%
0x70 43.9% 51.2 44.9%
0x80 50.2% 61.5 53.9%
0x90 56.5% 71.5 62.7%
0xA0 62.7% 81.1 71.1%
0xB0 69.0% 90.1 79.0%
0xC0 75.3% 98 86.0%
0xD0 81.6% 104.5 91.7%
0xE0 87.8% 109.2 95.8%
0xF0 94.1% 112.3 98.5%

The results are presented graphically in Figure 18. Note the similarity between the shape

in the graph, and the theoretical results from Figure 2.

Voltage vs Control Setting

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xA0 0xB0 0xC0 0xD0 0xE0 0xF0

Control Setting (Hex)

V
o

lt
ag

e
(%

 F
u

ll
S

ca
le

)

Figure 18: Output voltage vs. control input

 43

Several loads were connected to the dimmer in order to verify its current handling

capabilit y. These loads included a 500W halogen lamp, two 60W desk lamps and

approximately 200W of assorted reading lamps and Christmas lights, for a total of 820W.

This load was attached to one channel and the dimmer was set to 0%, 50% and 100% of

full brightness and operated at each setting for 20 minutes. No undue heating or other

problems were observed.

Unfortunately fuses and noise-suppression inductors could not be sourced in time for the

completion of the project. A case has been constructed for the project that includes a

hole for a fuseholder to be added in the future. The dimmer did not cause undue noise in

nearby audio equipment even when operating with 1000W loads. However, suitable

inductors should be added and tested in the future to ensure the dimmer will cause no

problems.

8.7. MIDI Input Testing
In order to test the MIDI input, the four notes depicted in Figure 19 were entered into

Midisoft Studio for Windows, a music sequencing program. Windows MIDI mapper was

configured to output on the computer’s external MIDI port, which was connected to the

dimmer via a standard interface cable. In MIDI, middle C is note number 64. Since there

are 12 notes per octave, every C note number modulo four will equal zero. As expected,

when the measure shown was “played,” each of channels one to four turned on and then

off in order.

 44

Figure 19: MIDI lighting test measure

8.8. RS485 and DMX512 Input Testing
The RS485 control input was tested by manually simulating the DMX512 format data in

a Windows terminal emulator, set to 19 200 bits per second. Tera Term is a freely

available terminal emulator that allows a break signal to be sent (by pressing Alt-B), in

addition to arbitrary characters. In order to mimic the DMX512 protocol, the keystrokes

as shown in Table 1 were entered in Tera Term.

Table 5: Keystrokes to simulate DMX512 protocol

Protocol Element Value Keystroke
Break <Alt-B>
Null start code 0 <Alt-000>
Dimmer channel 1 intensity 65 A
Dimmer channel 2 intensity 97 a
Dimmer channel 3 intensity 90 Z
Dimmer channel 4 intensity 122 z

When this data was entered, the dimmer channels were set to voltages consistent with the

expected values.

Unfortunately access to proper DMX512 transmitting equipment could not be obtained,

so DMX512 protocol data at 250 000 bits per second could not be tested. However, the

protocol appears to function properly at 19 200 bits per second.

 45

9. Conclusions

It was concluded that each channel of the dimmer output can take on any voltage between

zero and 98% of full scale, meeting the specifications of at least 5% to 95%.

It was concluded that each channel of the dimmer can independently handle a 1000W

load as required by the specifications.

It was concluded that the debug / supervisory RS232 port on the dimmer works as

expected, and can be used to configure the dimmer and set channel intensities.

It was concluded that the MIDI input works as expected and MIDI note data can set the

channel intensities according to MIDI key number and MIDI velocity.

It was concluded that the RS485 port works at 19 200 bits per second and decodes

DMX512 data into channel intensities, however real DMX512 data at 250 000 bits per

second was not tested.

 46

10. Recommendations

It is recommended that the DMX512 input be tested at the full 250 000 bit per second

rate. This will probably require the assistance of a group possessing a DMX512

transmitter, such as the Drama department at the University of Waterloo.

It is recommended that the hardware issues and pinout problems addressed in section 8.4

be corrected in a new version of the printed circuit board.

It is recommended that fusing and output filters be added to each dimmer channel.

 47

11. References

[1] Quail Electronics, NEMA Plug and Receptacle Configurations,
http://www.quail .com/locator/nema.htm (Current Feb 2, 2001)

[2] The Centre in the Square, Lighting Instrument Inventory, http://www.centre-
square.com/electrical.htm#Instruments (Current Feb 2, 2001)

[3] Teccor Inc., Phase Control Using Thyristors, Application Note AN1003,
http://www.teccor.com/thyristor/an1003.pdf (Current Feb 6, 2001)

[4] National Semiconductor, Summary of Well Known Interface Standards, Application
Note AN-216, http://www.national.com/an/AN/AN-216.pdf (Current Feb 6, 2001)

[5] Coesel, N., Generic MIDI interface, http://www.midiweb.com/hww/midi/uc_midi.txt
(Current Feb 6, 2001)

[6] Coesel, N., Serial Card MIDI Interface,
http://www.midiweb.com/hww/midi/ser_midi.gif (Current Feb 6, 2001)

[7] United States Institute for Theatre Technology Inc., DMX512 Home Page,
http://www.usitt.org/DMX/DMX512.htm (Current Feb 6, 2001)

[8] National Semiconductor, Transceivers and Repeaters Meeting the EIA
RS-485 Interface Standard, Application Note AN-409,
http://www.national.com/an/AN/AN-409.pdf (Current Feb 6, 2001)

[9] Finney, D., The Power Thyristor and its Applications, p. 35, McGraw-Hill Book
Company Limited, Toronto, 1980

[10] National Semiconductor, LM340/LM78Mxx Series 3-Terminal Positive Regulators,
http://www.national.com/ds/LM/LM340.pdf (Current Mar 7, 2001)

[11] Tamura Corporation, Tamura Home Page, http://www.tamuracorp.com/ (Current
Mar 7, 2001)

[12] Suppanz, B., PCB Trace Width Calculator,
http://www.geocities.com/CapeCanaveral/Lab/9643/TraceWidth.htm (Current Mar 7,
2001)

 48

Appendix A: Schematics

Pages:
1. Power supply, zero crossing detector and output drivers
2. Microcontroller and debug UART
3. Control input interface components and level shifters

 49

Insert schematic page A-1

 50

Insert schematic page A-2

 51

Insert schematic page A-3

 52

Appendix B: PC Board Layouts

Pages:
1. Copper layout, top layer
2. Copper layout, bottom layer
3. Drill drawing
4. Component placement guide

 53

Insert PCB B-1

 54

Insert PCB B-2

 55

Insert PCB B-3

 56

Insert PCB B-4

 57

Appendix C: Annotated Bill of Materials

Pages:
1. Circuit board assembly
2. Circuit board assembly (cont’d)
3. Complete dimmer assembly

 58

Qty Reference Designators Description MFG & Part No Supplier Est. Price

 Capacitors

1 C1 1000u lytic stock $0.00 $0.00
18 C2,C3,C5,C6,C7,C8,C9,C12,

C15,C17,C18,C19,C20,C21,
C22,C23,C24,C25

0805 100n stock

$0.00 $0.00
1 C4 47u lytic stock $0.00 $0.00
4 C10,C11,C13,C14 0805 33p stock $0.00 $0.00
1 C16 1u 10V lytic stock $0.00 $0.00

 Resistors

4 R1,R4,R7,R13 150R 1/4W TH Axial Sayal $0.00 $0.20
4 R2,R5,R8,R14 330R stock $0.00 $0.00
4 R3,R6,R9,R15 47R 1/2W TH Axial Sayal $0.00 $0.40
2 R10,R12 10K 1/2W TH Axial Sayal $0.00 $0.10
3 R11,R24,R33 2k21 stock $0.00 $0.00
9 R16,R17,R18,R19,R20,R28,

R29,R30,R31
500R stock

$0.00 $0.00
1 R21 100K stock $0.00 $0.00
5 R22,R23,R25,R26,R27 221R stock $0.00 $0.00
1 R32 120R stock $0.00 $0.00
1 R34 0R Jumper stock $0.00 $0.00

 Diodes & Discretes

8 D1,D2,D3,D4,D5,D7,D8,D16 Power Diode 1N4005 stock $0.00 $0.00
4 D6,D14,D15,D21 Signal Diode 1N4148 stock $0.00 $0.00
9 D9,D10,D11,D12,D13,D17,

D18,D19,D20
Surface Mount LED kingbright

$0.00 $0.00
4 Q1,Q2,Q3,Q4 Triac BT216X Tech-Trek $0.00 $0.00
1 Q5 Small signal NPN 2N3904 stock $0.00 $0.00

 Connectors & Misc

6 J1,J2,J3,J4,J5,J6 Screw Terminal Keystone 7693 EMX $0.00 $0.00
4 J7,J8,J9,J10 Surface Mount

Header
Samtec TSM-105-
01-S-DV

Samtec
$0.00 $0.00

1 K1 Relay DPDT 5V coil
DIP

unknown Supremetronic
$2.50 $0.00

1 T1 Power Transformer Tamura 3FS-312 Longman Sales $0.00 $0.00
1 Y1 8MHz crystal 8MHz Sayal $0.00 $1.00
1 Y2 3.6864MHz crystal 3.6864MHZ Sayal $0.00 $1.00

 59

Qty Reference Designators Description MFG & Part No Supplier Est. Price

 Integrated Circuits
4 U1,U2,U4,U6 Optocoupler Fairchild MOC3011 CSC $0.00 $0.00
1 U3 Regulator LM7805CT stock $0.00 $0.00
2 U5,U13 Optocoupler Fairchild 6N138 CSC $0.00 $0.00
1 U7 Microcontroller Atmel AT90S8515 Clarsand $0.00 $0.00
1 U8 SPI UART MAX3100xEE Maxim $0.00 $0.00
1 U9 Quad buffer ON Semi

74VHC125D
ON Semi

$0.00 $0.00
1 U10 RS232 Level Shifter MAX202 Maxim $0.00 $0.00
1 U11 Dual 4-1 Mux ON Semi

74VHC157D
ON Semi

$0.00 $0.00
1 U12 RS485 Level Shifter MAX487 Maxim $0.00 $0.00

 Misc
1 X1 PLCC Socket Mill-Max 540-99-

044-17-400000
Mill-Max $0.00 $0.00

 Total Component Expense: $2.50 $2.70

 NOTE: Transformer 3FS-312 from Longman Sales did not arrive in time for the project to be completed;

 a "wall adaptor" power supply was substituted instead

 60

Qty Description MFG / Part No Supplier Est. Price

 Board

1 PC Board Custom Alberta Printed Circuits $0.00 $125.00
1 PC Board components Per BOM pg 1 $2.50 $2.70

 Assembly

1 Power cord Sayal $1.00 $1.00
5 1m length of wire (5 colours) T-90 14 gauge Home Depot $2.50 $2.00

12 Crimp-on screw lugs Home Depot $2.40 $1.20
2 Standard receptacles Home Depot $2.00 $1.00
1 Electrical box Home Depot $2.00 $4.00
1 Electrical faceplate Home Depot $0.50 $1.50

 Cabinet

1 Mounting screws 4-40 by 1.5" Student Machine Shop $0.00 $0.00
1 Aluminum, bottom of case 16 ga 8" x 20" Main Shop $0.00 $0.00
1 Aluminum, top of case 18 ga 8" x 14" Main Shop $0.00 $0.00

 Total Component Expense: $12.90 $138.40

 Total Component Expense (Excluding PCB): $12.90 $13.40

