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Summary 
The project described in this report is a microprocessor-controlled lighting dimmer that 

could be used in theatrical or other applications.  The project consists of a physical 

hardware prototype and associated firmware to execute on the project's processor. 

 

The report begins with a description of the customer requirements for the project.  These 

were developed into functional specifications.  The report then describes the design 

process for the project hardware and firmware.  The testing methodology and results are 

also included. 

 

It was concluded that the project works as expected and as required in all material 

aspects.  One of the modes of operation could not be fully tested due to the lack of 

available test equipment.  It is recommended that further testing be completed and some 

minor design issues be rectified if another version of the project was to be built . 
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1. Design Abstract 

The Microcontroller based Multichannel Light Dimmer (MMLD) is a microprocessor-

controlled lighting dimmer that could be used in theatrical or other applications.  The 

project will consist of a physical hardware prototype and associated firmware to execute 

on the project's processor. 

 

The device will accept input from a wide range of interfaces: RS232, DMX512 (a 

theatrical li ghting standard) or RS485, and the Musical Instrument Digital Interface 

(MIDI). The device will control a number of lamps by using some form of AC power 

control. The firmware in the microcontroller would handle all functions, from decoding 

the protocol on either of the input interfaces through to timing the firing of power triacs 

for the output. 
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2. Project Plan and Milestones 

2.1. Design Challenges 
The dimmer hardware will present some design challenges due to the large currents it 

will be required to handle (up to 15A).  This will require careful attention to component 

selection, circuit design, printed circuit layout, and assembly technique.  The dimmer also 

operates with AC mains potential (120V) so careful attention to safety will be required. 

 

The dimmer will have a number of control interfaces, and each of these must be 

compliant with relevant standards to ensure interoperabilit y with other equipment. 

 

The dimmer’s firmware has two main aspects: responding to data via its control 

interfaces and turning on the output switches at the correct time relative to the AC line 

voltage.  It is anticipated both of these aspects will present hard real time problems.  

Faili ng to process the control data as it arrives will result in the dimmer having incorrect 

intensity values on one or more channels, and faili ng to turn on the output drivers at the 

correct time will result in erratic or incorrect output voltages.  It is anticipated that these 

real-time requirements can be met by careful code design and the use of microcontroller 

resources (such as timers and interrupts) for dedicated tasks. 

2.2. Milestones 
Table 1 details each of the anticipated major milestones for the project, including the 

target completion date and the actual completion date if the milestone has been 

accomplished. 
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Table 1: Project Milestones 

 
Milestone 

 
Target Date 

Status or 
Completion Date 

Customer Requirements January 15, 2001 January 17, 2001 
Functional Specifications January 22, 2001 January 22, 2001 
High Level Design January 29, 2001 February 4, 2001 
Component Selection February 5, 2001 February 18, 2001 
Schematic Design February 12, 2001 March 1, 2001 
PCB Layout February 19, 2001 March 11, 2001 
PCBs Fabrication February 26, 2001 March 16, 2001 
Prototype Assembly March 5, 2001 March 26, 2001 
Initial Firmware Complete March 12, 2001 April 1, 2001 
Prototype Testing and Verification March 19, 2001 April 20, 2001 
 

2.3. Expected and Known Requirements 

2.3.1. School Resources 
The project designer has access to work space outside of school so the requirement for 

school lab space should be minimal.  The labs may be used during the testing and 

verification stage for access to equipment such as oscill oscopes. 

 

Should the school’s circuit board milli ng machine be operational, it will li kely be 

employed for the fabrication of PCBs for the project. 

2.3.2. Industry Resources 
It is anticipated that surface mount devices, including fine pitch devices, will be 

employed in the design and construction of this project.  The hardware lab at Cisco in 

Waterloo will be used to solder these parts to the project’s circuit board. 

2.3.3. Software 
The project will be developed using Open Source or freely available tools, so commercial 

software will not have to be purchased.  Firmware written for the project’s 

microcontroller will be developed in C and complied with GCC, if GCC has support for 
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the chosen microcontroller.  Otherwise, a microcontroller will be chosen that has free 

assemblers or compilers available. 
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3. Customer Requirements 

The project shall be an intelli gent lighting controller that will provide automatic control 

of the brightness of lamps attached to it, for amateur theatrical or home applications.  At 

least four independent channels of lighting control shall be provided. 

 

It shall provide standard electrical sockets that these lamps can be plugged into, and will 

itself be plugged into a wall socket for power.  The project shall operate on (at least) the 

AC power supply available in North America. 

 

For household applications, each dimmer channel shall have a power handling capacity to 

allow two common table lamps, or one large floor-standing lamp, to be connected.  To 

allow for theatrical use, each channel shall have a capacity to allow one large or several 

smaller theatrical li ghts to be connected.  The overall capacity of the dimmer may be 

limited to the power available from one standard wall socket. 

 

The project shall be compatible with standard dimmer control interfaces and shall also 

allow easy connection to a standard personal computer. 
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4. Functional Specifications 

Based on customer requirements, the functional specifications indicate the scope of the 

design and include relevant documentation for all i nterfaces provided by the project. 

4.1. AC Power Input 
The nominal power supply from a standard AC outlet in Canada and the USA is 120V 

alternating current (AC) with a frequency of 60Hz (60 cycles per second).  To allow for 

variations due to load and other factors, a tolerance of 10% shall be allowed on the 

voltage and 5% on the frequency.  Thus, the dimmer should operate on 108V to 132V AC 

and 57 to 63 Hz. 

 

A standard wall receptacle circuit provides up to 15A of current.  Since this dimmer is 

intended for home or amateur theatrical use, this is the maximum current the dimmer may 

draw.  The dimmer’s input shall be fused with a 15A fast-blow fuse.  This provides for a 

maximum connected load of 1800 watts across all dimmer channels, excluding power 

required by the dimmer itself. 

 

4.2. Dimmer Channel Outputs 
The dimmer shall provide one standard power receptacle per dimmer channel.  The 

receptacle type shall be in accordance with the National Electric Manufacturers 

Association type 5-15R [1]. 
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Several residential lamps were examined to determine the power handling requirements 

of a single dimmer channel.  Table lamps mostly used 60W bulbs, with the maximum 

being 150W in one fixture.  The highest power bulb, at 500W, was found in a floor 

standing halogen lamp. 

 

The dimmer should also be useable for amateur theatrical productions.  Table 2 provides 

a summary of the lights in use at The Centre in the Square in Kitchener [2].  This is a 

professional theatre but gives a good indication of the types of lights used for theatrical 

lighting.  As indicated, almost all of the lights are 1000W or less. 

Table 2: Light Quantity by Wattage at The Centre in the Square 

Light Wattage Quantity of Lights Percentage of lights at 
Wattage or below 

500W 6 1.1% 
575W 194 37.4% 
1000W 321 97.4% 
1500W 8 98.9% 
2000W 6 100% 

 

Based on the power requirements of these theatrical and home lamps, each dimmer 

channel shall be capable of handling 1000W with some margin (which will be 

determined by the availabilit y of components).  At 120V this represents a current of 

8.33A.  The dimmer also should not have a minimum load requirement per channel.  The 

smallest reasonable 120V bulb is a 5W Christmas-tree lamp so this may be taken as a 

practical minimum load if desired.  Each of the dimmer channels must be individually 

fused at a current less than the capabilit y of that channel. 
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The dimmer must be able to vary the brightness of lamps connected to each channel by 

changing the average or RMS power delivered to the lamp.  The controllable range 

should be as wide as possible, but should be at least 10% to 90%.  Phase control [3] will 

be used to vary the applied RMS voltage. 

 

The dimmer should incorporate electrical interference filtering components so that it does 

not adversely affect other electronic equipment. 

4.3. Electrical Safety 
Because of the high voltages (AC mains potential) used in the dimmer and for the 

channel outputs, the dimmer must adhere to electrical safety guidelines.  Galvanic 

isolation must be provided between any component connected to the AC line and the rest 

of the circuitry and interfaces that are not.  Any devices used to provide such isolation 

shall have an isolation rating of at least 2000 volts.  Creepage and clearance distances on 

the PCB shall be at least 0.125 inches to ensure adequate isolation. 

4.4. Control Interfaces 

4.4.1. RS-232 
In order to provide easy interfacing with a standard personal computer, as indicated in the 

customer requirements, an RS-232 port shall be provided on the dimmer.  This is the type 

of port commonly referred to as a “serial port” on a PC.  RS-232 is more correctly called 

TIA/EIA-232-F and actually specifies only the physical layer electrical interface [4], but 

in common usage it also indicates that asynchronous serial data is being transmitted and 

received, at one of many standard baud rates. 
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No requirement for the protocol used by the RS-232 interface has been set; therefore a 

simple menu based system will be used to allow system configuration and setting dimmer 

channel values.  The baud rate will be 38 400 bits per second which should allow menus 

to be displayed at a reasonable speed.  (A menu with 10 lines of 40 characters each would 

take 40 * 10 / (38 400 / 10) seconds, or roughly 100 milli seconds.)   

 

The RS-232 port shall also be used for debugging and initial system testing.  In order to 

facilit ate debugging of the other control interfaces, the RS-232 port must operate 

independently of, and concurrently with, the other interfaces. 

 

The RS-232 connection shall use a female DB-9 connector, allowing a connection to a 

personal computer via a “straight-through” serial cable. 

4.4.2. MIDI 
The Musical Instrument Digital Interface (MIDI) is a specification describing a protocol 

and electrical interface, and is typically used by electronic musical instruments.  The 

dimmer shall be controllable by MIDI data in order to allow the dimmer to be used in 

performances by electronic musicians.   

 

The dimmer should respond to MIDI standard “note on” and “note off ” messages.  MIDI 

“note on” messages contain a velocity (volume) level; this will be interpreted as a 

dimmer channel brightness setting.  The dimmer should be able to be configured to 

receive one MIDI channel and have a different note number assigned to each of the four 

channels. 
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MIDI specifies that asynchronous serial communication is used at a baud rate of 31 250 

bits per second [5], and the data is transmitted via a current loop.  Current flowing in a 

MIDI connection corresponds to the active, or space, state.  An absence of current 

indicates an idle, or mark, state.  The MIDI interface will use standard female five pin 

DIN connectors and provide optical isolation on the receive channel [6].  MIDI data shall 

be received on a MIDI In port, and this shall be passed through to a MIDI Thru port to 

allow daisy chaining with other devices.  A MIDI Out port may also be included although 

at this time it is not anticipated that the dimmer will generate its own outgoing MIDI 

data. 

 

Use of the MIDI interface may be mutually exclusive with use of the other interfaces 

(with the exception of the RS-232 interface). 

4.4.3. DMX512 
A very common interface and protocol in theatrical li ghting is DMX512 [7], which 

specifies how data is carried from lighting controllers to dimmers and light fixtures.  It 

allows up to 512 individual dimmer channels to be controlled by one control cable. 

 

DMX512 specifies asynchronous serial data transmitted at a rate of 250 000 bits per 

second using eight bits per byte, two stop bits and no parity.  The data is transmitted 

using a balanced scheme, electrically equivalent to RS-485.  Male five pin XLR 

connectors are used for input and female five pin XLR connectors are used for output. 
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DMX512 also specifies the low level protocol used on the interface.  A serial “break” is 

transmitted for at least 88 uS followed by at least 8 uS of idle (mark).  A start code of 

0x00 is then transmitted, followed by up to 512 eight-bit dimmer intensity values. 

 

Use of the DMX512 interface may be mutually exclusive with use of the other interfaces, 

except for RS-232. 

4.4.4. RS-485 
Since DMX512 is electrically equivalent to RS-485, an RS-485 connection may easily be 

provided on the dimmer via screw terminals.  RS-485 specifies the use of a balanced 

interface with two data signals that are identical except for polarity [8].  This allows for a 

high degree of noise immunity when compared to more common serial interfaces such as 

RS-232.  The data rate and protocol used on the vanill a RS-485 interface does not need to 

be defined and the interface may be provided for future capabilit y only.  Use of the RS-

485 interface may be mutually exclusive with use of the other interfaces except for RS-

232. 

4.5. Firmware Functionality 
The firmware has three functional tasks: system configuration, receiving protocol data, 

and controlli ng the output power drivers.   

 

The system configuration system operates over the RS-232 interface and must allow the 

user to choose which of the control interfaces the dimmer will respond to.  As well , any 

parameters for the specific control interface must be user settable.  The MIDI interface 
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requires that the MIDI channel and note numbers be settable, while the DMX512 

interface requires that each channel can be assigned to a dimmer number. 

 

The firmware must receive and process protocol data on the selected interface, and 

interpret that data within the time taken to transmit the following control message. 

 

The firmware must monitor the AC line zero crossing to determine when to turn on the 

output drivers and then activate them at the appropriate time. 
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5. High Level Design 

5.1. Phase Control 
The dimmer will use the technique of AC phase angle control, where the output loads are 

turned on for a portion of the total AC line sinewave period, as shown in Figure 1.  If the 

loads are turned on at the beginning of the AC cycle, they will receive approximately the 

full power available from the AC line.  If they are not turned on during an AC cycle, they 

receive no power.  If the loads are powered for some portion of an AC line cycle, they 

will receive a corresponding portion of the total available power. 

Off Off OffO n On

AC L ine Resul tant
Wave fo rm

V
ol

ta
ge

C
on

tr
ol

Time

 

Figure 1: AC Phase Control 

 

We define α as the phase delay between the AC line zero-crossing and the instant the 

output channel is turned on.  The range on α is then zero to 180 degrees, with 0 degrees 

corresponding to full power an 180 degrees corresponding to zero power.  The average 

and RMS voltage applied to the load, as a function of delay angle, appears in Figure 2 

[9]. 
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Figure 2: Load Voltage vs. Delay Angle 

 

Clearly, the applied voltage to the dimmer’s loads can be varied from essentially zero to 

100% of the supply voltage by changing the delay angle. 

5.2. Hardware Block Diagram 
The block diagram for the dimmer appears in Figure 3.  The criti cal component in the 

dimmer is a microcontroller.  A microcontroller provides a low-cost method to easily 

implement the required functionality of the dimmer.  It can simultaneously process input 

from any of the required control inputs, and control the power electronics for the 

individual channels.  The microcontroller uses the input from an optically isolated zero 

crossing detector to determine how much time to delay before turning on individual 

channels. 
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Figure 3: Dimmer block diagram 

 

5.3. Firmware 
The firmware has three main tasks.  The primary task is the real-time phase angle control 

of the output circuits relative to the AC line zero crossing.  In addition, it must process 

intensity messages on the various control inputs.  Finally, it has to handle system 
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configuration and management tasks (such as selecting which input is active).  It is 

intended that each of these functions be implemented as autonomous modules and be 

primarily interrupt-driven to avoid the downsides of polli ng schemes. 

5.3.1. Phase Angle Controller 
As mentioned, the dimmer will be based on a microcontroller.  Most microcontrollers 

include timers and external interrupt capabiliti es.  Many microcontroller timers provide 

compare and capture functionality, often providing a mode where a specified action can 

occur once the timer increments to a certain value.  The phase angle control system will 

make use of these interrupt-driven resources to provide real time TRIAC firing without 

burdening the processor. 

5.3.2. Debug / Supervisory and Control Inputs 
All communications between the dimmer and external devices will be via one of two 

serial ports.  One serial port (UART) is dedicated to debug and supervisory tasks and will 

be implemented as an RS232 port, while normal MIDI and DMX/RS485 communications 

can share another UART.  A software-settable control signal should be provided to 

facilit ate the switching between the two uses of the one UART.  Both of these UARTs 

should be completely interrupt driven to reduce the burden on the processor. 

5.3.3. Supervisory Tasks 
The dimmer requires some supervisory control, which will be implemented via a menu 

on the debug and supervisory RS232 port.  The supervisory tasks include the selection of 

the active control mechanism (MIDI, DMX512 etc.) and system configuration (such as 

enabling or disabling line termination).  In addition, intensity control data will be 

accepted on the supervisory and debug port to allow for system testing and personal 



 17 

computer (PC) control.  The supervisory and debug port should provide some 

acknowledgement after receiving a request so that any associated control software can 

determine that the dimmer is still connected and operational. 
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6. Low Level Hardware Design 

The hardware design began with the selection of components for the power supply, zero 

crossing detector and output drivers.  The component selection and design process will be 

described in the following sections.  Component designators (i.e. U3 or R7) refer to the 

schematics in Appendix A. 

6.1. Component Selection and Schematic Design 

6.1.1. Power Supply 
The dimmer is to be a self-contained unit and thus requires a power supply to provide low 

voltage DC for its electronics from the AC power line.  Because the current requirements 

of the dimmer’s circuitry will be quite low, a standard linear topology was chosen.  The 

components used in the dimmer will be standard, conventional parts that will use a 

supply voltage of 5V.  These specifications dictate the use of a low-cost, ubiquitous linear 

regulator -- the National Semiconductor LM7805 [10] as U3.  The LM7805 requires an 

input voltage of at least 7.5V in order to guarantee regulation, so the unregulated power 

supply should supply at least this voltage under worst-case current consumption, assumed 

to be about 200mA. 

 

Because a full -wave bridge rectifier will be used for eff iciency (diodes D1-D4), we can 

assume that about 1.4V will be lost across the bridge (0.7V per conducting diode).  We 

therefore need a peak voltage of at least 9V from the power transformer.  Because the 

RMS voltage of a sinusoidal AC signal is 0.707 times the peak, a power transformer with 

a 6.3V RMS secondary is required.  A Tamura Corporation 3FS-312 transformer was 

selected as T1, which has a 6.3V RMS secondary at 400 mA [11]. 
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6.1.2. Zero Crossing Detector 
In order for the dimmer to determine at which point on the AC cycle to turn on individual 

channels, it needs a reference for the AC zero crossing.  For safety reasons this zero 

crossing detector must be isolated from the low voltage electronics.  This isolation can be 

achieved at low cost with an optoisolator, a component which uses light to provide 

galvanic isolation.  Typically, a light emitting diode (LED) will be used as the light 

source and a light sensitive transistor as the receptor. 

 

U5 is the optoisolator used as the zero crossing detector and is a 6N138 from Fairchild 

Semiconductor.  It uses a darlington (dual transistor) output stage for high gain, providing 

a current transfer ratio (CTR) of typically 2000%.  That is, the output current changes by 

200 times the change in input current.  The part is therefore useful for directly driving 

logic level inputs.  The typical input parameters are: forward voltage VF=1.30V, forward 

current IF = 1.6mA.  The maximum forward current is 20mA. 

 

The zero crossing detector works by first full -wave rectifying the AC line using diodes 

D5, D7, D8 and D16.  Full -wave rectifying before the zero crossing detector guarantees 

that the output waveform at the loads will be symmetric in the positive and negative half 

cycles, which is important for powering some types of loads such as transformers.  This 

produces positive-going half-sinewave pulses at 120Hz.  The peak voltage is 

VV 1702120 =× .  By using 20K of series resistance, basic Ohm’s law determines the 

maximum current through the optoisolator to be mAVV
R

VI 5.820000
4.1170 =Ω

−== .  

The AC line voltage at which the optoisolator is guaranteed to be on is 
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VkmAIRV 32206.1 =Ω×== .  This point on the sinewave corresponds to 

( ) °=− 11170
321

V
VSin .  In practice, the optoisolator will probably turn on much earlier. 

6.1.3. Output Power Drivers 
Triacs Q1-Q4 are used as the output drivers due to their low cost, small size and 

ruggedness.  The BTA216X-600B device from Phili ps Electronics was chosen, due to 

some excellent characteristics.  It comes in a fully-isolated package, which makes 

heatsinking easier and safer.  It is also a so-called “snubberless” triac.  Most triac circuits 

require a resistor-capacitor (RC) snubber to prevent false triggering when driving certain 

types of loads.  The Phili ps snubberless triac is very resistant to this false triggering due 

to its design.  (The schematic has provisions for such a snubber as a contingency if the 

Phili ps parts could not be obtained in time.)  The BTA216X-600B is rated for 16A which 

easily allows for the 1000W per channel power requirement. 

 

In order to provide isolation and ease triggering of the triacs, MOC3011 optoisolators 

(Fairchild Semiconductor) are used.  These are designed to directly drive a triac’s gate 

input, and the output circuits are basically copies of Fairchild’s application note [ref! ]. 

6.1.4. Microcontroller 
The heart of the dimmer is U7, an Atmel AT90S8515 microcontroller.  This 

microcontroller was chosen for several reasons.  The project designer has extensive 

experience with the AVR series, as well  as development tools for the parts.  The GNU 

Compiler Collection (GCC) targets the AVR as a cross-compiler, allowing the project to 

be developed in C.  The part also has eight kilobytes of f lash memory for program 

storage, allowing for reasonably sized programs to be loaded.  The AVR series is also in-
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circuit programmable which eases the development cycle and allows for incremental 

firmware design.  U7 runs at 8MHz, a frequency determined by crystal Y1. 

 

The ‘8515 has some additional features beyond other members of the AVR series.  It 

provides two external interrupt sources, one 16 bit and one 8 bit timer, a built -in UART, 

and a synchronous peripheral interface (SPI) serial port.  One of the interrupts is triggered 

by the zero crossing detector.  The 16 bit timer has an interrupt on compare match mode, 

and can be used for controlli ng the output turn-on point.  The built -in UART is dedicated 

to receiving and transmitting on the control interfaces (MIDI or RS485/DMX512).  

Finally, the SPI port is connected to a separate UART, to provide a serial port for 

debugging. 

6.1.5. Debugging UART and TIA/EIA-232 interface 
The dimmer design includes an external UART in order to ease the bring-up (initial) 

phase and allow for debugging of the dimmer, even when the internal UART is being 

used for the control interfaces.  The UART is U8, a MAX3100 from Maxim Integrated 

Products.  Crystal Y2 provides a 3.6864MHz reference for U8.  This frequency is chosen 

as it is an integer multiple of the baud clock required for standard asynchronous 

communications (e.g. 9600 baud or 57600 baud). 

 

U10 is another Maxim part, a MAX202.  This part converts transistor-transistor logic 

(TTL) signal levels to the bipolar voltage swings required by the TIA/EIA-232 interface.  

It has a built -in switched capacitor voltage convertor to generate the necessary +/- 10V 

supplies. 
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6.1.6. MIDI Interface 
The dimmer can receive control data via a MIDI interface, to allow it to be used by 

electronic musicians and controlled by existing musical gear.  The MIDI interface 

consists of a 6N138 optoisolator (U13), and a 74VHC125 quad buffer (U9).  MIDI 

specifies an isolated current loop interface, which is most easily accomplished with an 

optoisolator.  The logic output of U13 is buffered by U9A, where it is made available to 

U11, a 74VHC157 quad two-to-one multiplexor.  This multiplexor allows the 

microcontroller’s internal UART to be connected to either the MIDI interface or the 

RS485/DMX512 interface, depending on the state of the SERSEL signal. 

 

The MIDI input is passed to buffer U9B to provide a “MIDI Thru” connection, to allow 

daisy-chaining of additional gear.  The microcontroller’s UART transmit signal is 

buffered by U9C to provide a “MIDI Out” connection.  The dimmer will not make use of 

this connection at this time; it is provided only to allow for future expansion. 

6.1.7. DMX512 and RS485 interface 
DMX512 is simply an RS485 interface at the electrical level so these two control 

interfaces will share the same hardware.  They will differ only in the connector used and 

protocol details.  These interfaces will be collectively referred to as the “RS485 

interface.”  

 

The RS485 interface is based on a Maxim MAX487 transceiver.  The MAX487 converts 

between TTL level serial signalli ng and balanced RS485 levels.  The MAX487 can both 

convert TTL to RS485 and convert RS485 to TTL, depending on the state of two control 

signals, DE and RE.  DE enables the transmit portion (TTL to RS485) of the component, 
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and is connected to the microcontroller.  In the current project this signal will not be used 

because the RS485/DMX512 port is a receiver only.  The RE signal enables the receiver 

portion of the component, and is connected to ground; the receiver is permanently 

enabled. 

 

Because RS485 and DMX512 specify a balanced, controlled impedance cable, 

termination is required at the endpoints of the network.  To simpli fy installation and 

preclude the necessity of separate terminator plugs, the dimmer incorporates software 

controllable termination.  120 Ohm resistor R32 matches the characteristic impedance of 

the cabling specified for RS485.  Relay K1 connects this resistor across the RS485 bus 

when the TERMEN signal is high, indicating that termination is desired. 

6.2. PCB Layout 
Due to safety concerns and the high voltages and currents involved in the dimmer project, 

a printed circuit board (PCB) will be required.  Any sort of prototype construction would 

likely be too fragile (allowing a user to be exposed to high voltages) or not robust enough 

to withstand the high currents. 

 

The circuit board places all of the high voltage components along one side of the board 

and the low voltage components over the rest of the board area.  The only components 

allowed to bridge the two areas are the isolation components (optoisolators and 

transformer).  A red line 0.125 inches wide is drawn across the board indicating the gap 

between the high voltage and low voltage sections, and to indicate the required clearance 

distance for safety regulations. 
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A standard copper thickness on PCBs is 1.5oz (0.5oz of copper and 1.0oz of plating).  

Using these thicknesses, and allowing a 20 degree Celsius temperature rise, an online 

trace width calculator [12] suggested a minimum trace width of 235 Mils (0.235 inches).  

For this reason all of the high current traces on the PCB design are approximately one 

quarter inch wide (250 Mils) or more. 

 

The PCB layouts appear in Appendix B of this report. 
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7. Low Level Firmware Design 

7.1. Real-Time Phase Angle Control 
The primary task of the firmware is the real-time phase angle control.  This firmware 

module must perform three tasks: calculating the delay between zero-crossing and 

TRIAC turn-on, turning on the triac at the appropriate point in the AC cycle, and turning 

off all triacs at the AC line zero-crossing. 

 

The microcontroller’s 16-bit “Timer/Counter1” is used for timing the turn-on points for 

each of the four output triacs.  The timer’s clock source can be set to one of many inputs, 

including the processor’s clock or external inputs.  The timer is incremented on each 

clock edge.  The microcontroller’s clock will be used as the timer’s clock source, so that 

the timer count will i ncrement at a constant rate.  In addition, the zero-crossing edge 

interrupt will reset the count to zero, resulting in a count value that starts at zero on each 

AC line zero crossing and increments throughout the AC half-cycle.  This is shown in 

Figure 4. 
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Figure 4: Phase Angle usage of Timer/Counter1 
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The microcontroller’s clock can be prescaled (divided) by certain powers of two between 

one and 1024 before being routed to Timer/Counter1.  Since the dimmer’s specifications 

require it to work with a frequency of 60Hz ± 5%, the maximum period is 

mS
Hz

TP 5.17
%560

1 =
−

= .  Thus, one AC line half-cycle has a duration of 8.77 mS.  The 

8 MHz clock of the microcontroller has a period of 125 nS, so there are at most 70175 

clock cycles per AC half cycle.  Timer/Counter1 is a 16 bit timer, so it has a maximum 

value of 65535.  If the microcontroller’s clock was not prescaled before being routed to 

Timer/Counter1, the count value would overflow within the AC half-cycle, which is not 

acceptable.  The next-smallest division ratio is by eight, so that value will be used.  The 

terminal count of Timer/Counter1 (at 60 Hz – 5%) is then 

8772

8
8000000

1
77.8 =÷=

MHz
mSCountTerm , and at the nominal 60 Hz the terminal 

count is 8333. 

 

The timer has two compare registers associated with it, known as Timer/Counter1 Output 

Compare Register A and B.  The microcontroller has two 16-bit comparators, which 

continually compare the Output Compare Registers with the current value of 

Timer/Counter1.  Several actions can be performed by the hardware on a match, 

including the generation of an interrupt, or changing the state of a port pin. 

 

The phase angle control module uses the interrupt generation capabilit y.  The compare 

match interrupt service routine (ISR) is responsible for taking any action required at the 

instant of a match.  Initially, the comparison value is set to the count at which the triac 
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should turn on.  An interrupt is generated when the Timer/Counter1 count equals this 

value, which occurs at time (a) in Figure 5.  The Compare ISR would then set a port pin 

to turn on the triac, and reset the compare value so that the next interrupt occurs just 

before the end of the half-cycle.  At time (b) in Figure 5 the Compare ISR again executes, 

and clears the port pin to turn off the triac.  The compare register is reloaded with the 

turn-on value, and the cycle repeats. 
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Figure 5: Phase Control Comparator Operation 

This procedure can be extended for additional channels.  By sorting the turn-on 

comparison counts, the ISR simply has to switch on the appropriate triac in the sequence 

and reload the comparison register with the next value in order. 

 

The intensity control structures will be held in global variables.  In order to avoid a race 

condition, all of the ordered compare values must be updated at the beginning of the 
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cycle.  This leads to the zero-cross ISR pseudocode and global variables shown in Figure 

6. 

struct  
{  
 integer   time  
 integer   port_setting  
} intensity_data;  
 
intensity_data  new_intensity_data[5]  
intensity_data  cur_inten sity_data[5]  
boolean    g_update_intensity_data = false  
 
ZeroCrossISR()  
{  
 TimerCounter1_value = 0;  
 if (g_update_intensity_data)  
 {  
  copy (new_intensity_data, cur_intensity_data)  
 }  
 CompareValue = cur_intensity_data[0].time  
}  

Figure 6: Zero-Cross Interrupt Pseudocode 

 

The compare interrupt then becomes quite simple.  On each compare match, the next 

port_setting  is written to the triac output port, and the CompareValue  is set to 

the next time  value.  If the port_setting  corresponds to turning off all channels, the 

current_step  is set back to 0 in preparation for the next half-cycle.  This results in 

the ISR pseudocode and one additional global variable as shown in Figure 7. 

integer     current_step = 0  
CompareISR()  
{  
 TriacOutputPort = cur_intensity_data[current_step].port_setting  
 if (port_setting == all_channels_off)  
 {  
  current_step = 0  
 } else {  
  current_step = current_step + 1  
 }  
 CompareValue = cur_intensity_data[current_step].time  
}  

Figure 7: Compare Interrupt Pseudocode 
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The only remaining task for the dimmer firmware module is to compute the 

intensity_data  structures based on the desired channel intensities.  The minimum 

intensity occurs when the channel is not turned on at all , while the maximum intensity 

occurs when the channel is turned on right after the AC zero-crossing.  Thus, lower 

compare values correspond to greater intensities.  Given an 8-bit intensity value and a 

Timer/Counter1 terminal count of 8000, the delay before turning on a given channel is 

calculated as 




 −=

256
18000

intensity
TurnOnTime .  The dimmer firmware module provides 

a set_levels  function to perform this calculation.  Once the delay is calculated for 

each channel, the delays must be sorted from earliest to latest.  In addition, to simpli fy the 

comparison ISR, channels having the same intensity (and thus the same delay) should be 

coalesced into one.  The pseudocode appears in Figure 8. 

integer     intensity[4];  
 
set_levels()  
{  
 for (i =  0 to 3)  
 {  
  new_intensity_data[i].time = 8000 – (8000 * intensity[i] / 256)  
  new_intensity_data[i].port_setting = set_bit(i)  
 }  
 sort_data (new_intensity_data[])  
 coalesce_data (new_intensity_data[])  
 last_element(new_intensity_data[]).time = 8000  
 last _element(new_intensity_data[]).port_setting = all_channels_off  
}  

Figure 8: Level Setting Pseudocode 

 

7.2. Debug / Supervisory UART 
As indicated the hardware description, an external UART is provided for debug and 

supervisory tasks.  This UART communicates with the microcontroller via the serial 

peripheral interface (SPI) bus, a synchronous serial bi-directional bus.  The Atmel AVR 
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microcontroller has built -in hardware support for the SPI bus, simpli fying the task of 

communicating with the UART.  The SPI hardware generates an interrupt after 

transmitting and receiving eight bits.  The driver for the external UART uses two circular 

buffers for receiving and transmitting data on the debug / supervisory port.  The SPI 

interrupt initiates a dummy write if no data is available to be transmitted, or sends the 

appropriate character if any is.  As well , if a character was read during the transaction it is 

enqueued on the receive buffer. 

 

Simpli fied pseudocode for the UART driver appears in Figure 9.  The actual driver is 

somewhat more complex because the UART uses 16 bit words, requiring two SPI 

transfers per character. 

circular_buffer  rs232_tx  
circular_buffer  rs232_rx  
 
SPI_ISR()  
{  
 word  spi_in, spi_out  
 spi_in = read (spi_ data_register)  
 if (rx_flag_is_set (spi_in) AND NOT (is_full (rs232_rx) ) )  
 {  
  rs232_rx.enqueue ( data_byte (spi_in) )  

}  
if (byte_available (rs232_tx) )  
{  
 spi_out = transmit_byte (rs232_tx.dequeue() )  
} else {  
 spi_out = dummy_write  
}  
write (spi_data_re gister, spi_out)  

}  

Figure 9: SPI ISR for UART Communication 

 

The debug / supervisory ISR is not responsible for processing the incoming data; instead, 

it simply places received data in a buffer and takes data to transmit from a buffer.  
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Standard functions are provided to interact with these buffers.  Their pseudocode appears 

in Figure 10. 

 

// print out a character  
rs232_putc(char c)  
{  
 while (rs232_tx.is_full())  

{  
 do_nothing  
}  

 rs232_tx.enqueue(c)  
}  
 
// re ad in a character  
rs232_getc()  
{  
 while (rs232_rx.is_empty())  
 {  
  do_nothing  

}  
return (rs232_rx.dequeue())  

}  
 
// is a character available  
rs232_hasc()  
{  
 return (NOT rs232_rx.is_empty())  
}  

Figure 10: Debug / supervisory high level interface pseudocode 

 

7.3. Control UART 
The interface to the control UART is rather simple, because the UART is built -in to the 

microcontroller.  It provides an interrupt when a character is received, and when the 

UART is available for a character to be transmitted.  Since both MIDI and DMX512 are 

unidirectional protocols as far as the current scope of the dimmer project is concerned, 

the transmit capabiliti es of the internal UART will not be used. 
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Unlike the debug / supervisory UART, the receive interrupt is responsible for processing 

the incoming data according to the protocol associated with the selected control input.  

The pseudocode for the UART receive interrupt appears in Figure 11, and the two modes 

of operation are described below. 

7.3.1. MIDI mode 
The MIDI mode requires the UART to be set to 31250 bits per second.  MIDI consists of 

status bytes and data bytes, which are distinguished by having bit seven set or cleared 

respectively.  The status byte indicates the MIDI channel and message type, while the 

data byte(s) indicate the data associated with that message.  The dimmer responds to key 

down and key release messages.  Key down messages are sent when a note is started, and 

consist of the note number (each pitch is assigned a unique number) and the velocity, or 

volume.  The dimmer interprets the note number (modulo four) as the dimmer channel, 

and the velocity as the intensity.  This allows standard music composition packages to 

control the dimmer.  MIDI provides no error checking data. 

7.3.2. DMX512 / RS485 mode 
DMX512 is a unidirectional protocol using a serial interface at a speed of 250 000 bits 

pre second (or 0.25 Mbps).  The RS485 protocol adopted by the dimmer will be identical 

to the DMX512 protocol, except that the baud rate will be 19 200 bits per second to make 

it compatible with standard terminal software.  The protocol consists of a break signal 

(continuous active, or space, state on the serial li ne) followed by a mark (idle) state.  A 

start code is then transmitted which indicates the format of the following data bytes.  A 

start code of zero indicates that 8-bit intensity data follows.  In this case, zero or more 

intensity values are transmitted as single bytes, corresponding to global dimmer channels 
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zero through n-1 where n is the number of bytes transmitted after the start code.  Once the 

n bytes are transmitted, a new break signal can be transmitted to begin the next update.  

The DMX512 protocol includes no error checking data. 

 

UART_RX_ISR()  
{  
 character c = UART_rx_byte()  
 
 i f (serial_mode == MIDI)  
 {  
  midi.process(c)  
  if (midi.channel == DIMMER_MIDI_CHANNEL)  
  {  
   if (midi.message == KEY_DOWN)  

  {  
    intensity[midi.keynumber MOD 4] = midi.velocity  

  }  
  else if (midi.message == KEY_UP)  
  {  
   intensity[midi.keynumber MOD 4] = 0  
  }  

  }  
 }  
 else if (serial_mode == DMX512 OR serial_mode == RS485)  
 {  
  if (UART_rx_break_detected)  
  {  
   dmx_active = FALSE  
   dmx_channel = - 1 
  }  
  else  
  {  

  if (dmx_channel = - 1)  
  {  
   if (c == 0)  
   {  
    dmx_active = TRUE  
   }  
  }  
 }  

  dim mer_channel = dmx_channel – DMX_START_CHANNEL 
  if (dmx_active AND 0 <= dimmer_channel <= 3)  
  {  
   intensity[dimmer_channel] = c  
  }  
  dmx_channel = dmx_channel + 1  
 }  
}  

Figure 11: Control UART receive ISR pseudocode 
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7.4. Supervisory Control 
The final aspect of the dimmer firmware is the supervisory control code.  It is responsible 

for initializing the hardware, allowing the user to choose and configure the desired 

control input, configuring the hardware, and setting intensity values for manual testing or 

direct computer control. 

 

After initializing and displaying a menu, the control firmware waits in an infinite loop, 

polli ng for either a received character or a zero-crossing.  If a zero-crossing is detected, 

the dimmer firmware’s set_l evels  function is called to update and sort the intensity 

data. 

 

If a character is detected, it is read in and processed according to the simple menu 

scheme.  Sending a “0” through “3” indicates that the intensity value for that given 

channel will follow as a two-digit hex value.  Other single characters are assigned 

configuration tasks as indicated in the pseudocode of Figure 12.  Sending a “m” or a “d” 

followed by a two-digit hex value configures the MIDI channel or DMX starting channel 

respectively. 
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main ()  
{  
 initialize_hardware()  
 display_menu_and_config()  
 rs232_putc (‘>’)  
 do_forever  

{  
  if (rs232_hasc())  
  {  
   c = rs232_getc()  
   if (c == ‘t’)  
   {  
    toggle_termination()  
   }  
   else if (c == ‘c’)  
   {  
    select_next_c ontrol_input()  
   }  
   else if (c == ‘0’ to ‘3’)  
   {  
    intensity[c] = get_hex_value()  
   }  
   else if (c == ‘d’)  
   {  
    DMX_START_CHANNEL = get_hex_value()  
   }  
   else if (c == ‘m’)  
   {  
    MIDI_CHANNEL = get_hex_value()  
   }  
   else if (c == ‘?’)  
   {  
    display_menu_and_config()  
   }  
   rs232_putc (‘>’)  
  }  
  if (zero_cross_occurred())  
  {  
   set_levels()  
  }  
 }  
}  

Figure 12: Supervisory Control Pseudocode 
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8. Assembly and Testing 

8.1. Component Acquisition 
The bill -of-materials for the dimmer circuit assembly along with the bill -of-materials for 

the complete project appear in appendix C.  Each component indicates the source, and the 

price (estimated and actual) if it was not available as a sample.  Most of the components 

required for the dimmer were obtained as samples from various manufacturers or their 

representatives.  The project designer greatly appreciates the support of these companies, 

which are listed in Table 3 along with their contributions. 

Table 3: Project sponsors 

Company Contribution 
Atmel 
Clarsand Ltd. 

Microcontroller samples 

Cisco Systems (Waterloo) Lab space and equipment for surface mount 
soldering 

Fairchild Semiconductor 
Candian Source Corporation 

Optocoupler samples 

Keystone Electronics 
EMX Enterprises 

Screw terminals 

Kingbright LEDs Surface mount LEDs 
Maxim MAX3100 UART 

MAX202 level shifter 
MAX487 RS485 transceiver 

Mill -Max Surface mount PLCC sockets 
ON Semiconductor Logic IC samples 
Phili ps Semiconductors 
Tech-Trek Limited 

Triac samples 
Logic IC samples 

Samtec Surface mount 0.1” headers 
 

8.2. PCB Fabrication 
It was originally intended that the printed circuit board (PCB) for the project would be 

fabricated by the Electrical and Computer Engineering department’s PCB milli ng 

machine.  However, attempts to obtain access to the machine to produce the circuit board 
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proved unsuccessful and an external quick turnaround PCB fabrication company (Alberta 

Printed Circuits) was employed instead.  This dramatically increased the cost of this 

portion of the project.  However, it resulted in having a professionally produced circuit 

board in a short period of time.  A high quality board is important, considering the high 

currents and voltages involved in this project. 

8.3. Prototype Assembly 
The prototype circuit board was hand assembled at Cisco Systems of Waterloo and at the 

author’s home.  The small surface-mount circuit components (such as some integrated 

circuits, resistors and capacitors) were soldered at Cisco using the advanced soldering 

equipment there.  Larger components such as the triacs and other through-hole parts were 

assembled at home. 

8.4. Hardware Errors 
During assembly and subsequent initial testing, several hardware design errors became 

apparent.  These were all schematic-entry issues, and not higher level design issues.  

Each of the errors is described below. 

8.4.1. UART crystal ground connection 
Due to the use of an incorrect ground symbol, the ground for the UART’s crystal and 

associated capacitors (Y2, C13 and C14) was not connected to the global circuit ground.  

This was corrected by adding a jumper wire to the proper ground, as shown in Figure 13. 

Jumper

Y2

3.6864

1
2

3

C13

33p

C14

33p  

Figure 13: UART crystal ground problem 
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8.4.2. UART pinout 
Initially a surface mount UART was to be used as the debug UART.  However, this part 

could not be obtained before the circuit board was sent out for fabrication, so a through 

hole dual inline package (DIP) part was substituted.  Unfortunately, the surface mount 

part includes two extra pins, which are not to be connected externally.  When the part was 

changed to a DIP part, these pins remained and the actual UART had fewer pins than its 

socket.  In addition, the RX and TX pins in the component library were reversed.  These 

issues were resolved by cutting the incorrect copper PCB traces with a knife, and 

soldering jumper wires on to make the correct connections.  The incorrect and correct 

pinouts are shown in Figure 14. 
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Figure 14: Debug UART pinout - (a) correct (b) incorrect 

8.4.3. Triac pinout 
Due to a misinterpretation of the triac’s datasheet, their pinout was also incorrect, as pins 

1 and 2 were swapped as shown in Figure 15. 
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Figure 15: Triac pinout - (a) incorrect (b) correct 

The resolution for this issue was to carefully bend the pins, such that the triac’s actual pin 

1 went into the pin 2 hole in the circuit board, and pin 2 went into the pin 1 hole, as 

indicated in Figure 16. 

 

Figure 16: Triac modification to correct pinout 

8.4.4. Logic gate U9C 
Logic gate U9C in the MIDI output section of the schematic was placed backwards, with 

the input and output connections reversed.  Figure 17 shows both the incorrect 

connections as implemented in the PCB and the desired connection.  To fix this problem, 

pins 8 and 9 need to be li fted from their associated copper pads on the PCB, and small 

jumper wires soldered in to make the correct connection. 
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Figure 17: Logic gate U9C - (a) incorrect (b) correct 

 

8.5. Debug UART Testing 
After the hardware issues were corrected, the debug UART driver was implemented and 

tested.  It was important to have the debug UART operational at an early stage in order to 

facilit ate the completion of the rest of the design. 

 

Initially the debug UART worked in the transmit direction but not the receive direction.  

The hardware connects the UART’s IRQ output to one of the general purpose external 

interrupts on the microcontroller; the original intent was that the ISR for the external 

interrupt could initiate a receive or transmit sequence only when the UART required 

service.  However, it was found that the UART would keep the IRQ asserted even after 

the byte was read from it.  In order to get the debug UART working quickly and reliably, 

the external interrupt was disabled, and the SPI interrupt rewritten so that as soon as one 

transaction with the UART completes another one is started. 
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With this new driver, the UART seemed reliable.  A short test program was written and 

linked with the UART driver that would echo back received characters after a variable 

delay.  This worked properly indicating that the transmit and receive functionality 

worked and that the debug UART buffers were operational. 

8.6. Dimmer Testing 
The next dimmer module to be verified was the output drivers and control section.  To 

test the dimmer functionality a small program was written to receive four sets of hex 

values over the debug UART and then set the intensity values for each of the four 

channels.  A desk lamp was connected to each channel in turn and it was verified that the 

brightness monotonically increased with increasing values. 

 

The next step in the testing involved connecting a 100W load to the first dimmer channel, 

and applying incrementing values to the dimmer.  After each new value was set, the 

voltage at that channel’s output was measured with a Fluke model 12 multimeter.  In 

additionl, the voltage supplied to the dimmer, measured at the outlet it was plugged into, 

was 114V.  The measured data is recorded in Table 4 
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Table 4: Dimmer voltage test results 

Setting Percent 
Full Scale 

Measured 
Voltage 

Percent 
Full Scale 

0x00 0.0% 0 0.0% 
0x10 6.3% 1.923 1.7% 
0x20 12.5% 6.72 5.9% 
0x30 18.8% 12.96 11.4% 
0x40 25.1% 20.8 18.2% 
0x50 31.4% 30.06 26.4% 
0x60 37.6% 40.47 35.5% 
0x70 43.9% 51.2 44.9% 
0x80 50.2% 61.5 53.9% 
0x90 56.5% 71.5 62.7% 
0xA0 62.7% 81.1 71.1% 
0xB0 69.0% 90.1 79.0% 
0xC0 75.3% 98 86.0% 
0xD0 81.6% 104.5 91.7% 
0xE0 87.8% 109.2 95.8% 
0xF0 94.1% 112.3 98.5% 

 

The results are presented graphically in Figure 18.  Note the similarity between the shape 

in the graph, and the theoretical results from Figure 2. 
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Figure 18: Output voltage vs. control input 
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Several loads were connected to the dimmer in order to verify its current handling 

capabilit y.  These loads included a 500W halogen lamp, two 60W desk lamps and 

approximately 200W of assorted reading lamps and Christmas lights, for a total of 820W.  

This load was attached to one channel and the dimmer was set to 0%, 50% and 100% of 

full brightness and operated at each setting for 20 minutes.  No undue heating or other 

problems were observed. 

 

Unfortunately fuses and noise-suppression inductors could not be sourced in time for the 

completion of the project.  A case has been constructed for the project that includes a 

hole for a fuseholder to be added in the future.  The dimmer did not cause undue noise in 

nearby audio equipment even when operating with 1000W loads.  However, suitable 

inductors should be added and tested in the future to ensure the dimmer will cause no 

problems. 

8.7. MIDI Input Testing 
In order to test the MIDI input, the four notes depicted in Figure 19 were entered into 

Midisoft Studio for Windows, a music sequencing program.  Windows MIDI mapper was 

configured to output on the computer’s external MIDI port, which was connected to the 

dimmer via a standard interface cable.  In MIDI, middle C is note number 64.  Since there 

are 12 notes per octave, every C note number modulo four will equal zero.  As expected, 

when the measure shown was “played,” each of channels one to four turned on and then 

off in order. 
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Figure 19: MIDI lighting test measure 

 

8.8. RS485 and DMX512 Input Testing 
The RS485 control input was tested by manually simulating the DMX512 format data in 

a Windows terminal emulator, set to 19 200 bits per second.  Tera Term is a freely 

available terminal emulator that allows a break signal to be sent (by pressing Alt-B), in 

addition to arbitrary characters.  In order to mimic the DMX512 protocol, the keystrokes 

as shown in Table 1 were entered in Tera Term. 

Table 5: Keystrokes to simulate DMX512 protocol 

Protocol Element Value Keystroke 
Break  <Alt-B> 
Null start code 0 <Alt-000> 
Dimmer channel 1 intensity 65 A 
Dimmer channel 2 intensity 97 a 
Dimmer channel 3 intensity 90 Z 
Dimmer channel 4 intensity 122 z 

 

When this data was entered, the dimmer channels were set to voltages consistent with the 

expected values. 

 

Unfortunately access to proper DMX512 transmitting equipment could not be obtained, 

so DMX512 protocol data at 250 000 bits per second could not be tested.  However, the 

protocol appears to function properly at 19 200 bits per second. 
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9. Conclusions 

It was concluded that each channel of the dimmer output can take on any voltage between 

zero and 98% of full scale, meeting the specifications of at least 5% to 95%. 

 

It was concluded that each channel of the dimmer can independently handle a 1000W 

load as required by the specifications. 

 

It was concluded that the debug / supervisory RS232 port on the dimmer works as 

expected, and can be used to configure the dimmer and set channel intensities. 

 

It was concluded that the MIDI input works as expected and MIDI note data can set the 

channel intensities according to MIDI key number and MIDI velocity. 

 

It was concluded that the RS485 port works at 19 200 bits per second and decodes 

DMX512 data into channel intensities, however real DMX512 data at 250 000 bits per 

second was not tested. 
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10. Recommendations 

It is recommended that the DMX512 input be tested at the full 250 000 bit per second 

rate.  This will probably require the assistance of a group possessing a DMX512 

transmitter, such as the Drama department at the University of Waterloo. 

 

It is recommended that the hardware issues and pinout problems addressed in section 8.4 

be corrected in a new version of the printed circuit board. 

 

It is recommended that fusing and output filters be added to each dimmer channel. 
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Appendix A: Schematics 

 
Pages: 
1. Power supply, zero crossing detector and output drivers 
2. Microcontroller and debug UART 
3. Control input interface components and level shifters 
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Insert schematic page A-1 
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Insert schematic page A-2 
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Insert schematic page A-3 
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Appendix B: PC Board Layouts 

 
Pages: 
1. Copper layout, top layer 
2. Copper layout, bottom layer 
3. Drill drawing 
4. Component placement guide 
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Insert PCB B-1 
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Insert PCB B-2 
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Insert PCB B-3 
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Insert PCB B-4 
 



 57 

Appendix C: Annotated Bill of Materials 

 
Pages: 
1. Circuit board assembly 
2. Circuit board assembly (cont’d) 
3. Complete dimmer assembly 
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Qty Reference Designators Description MFG & Part No Supplier Est. Price 

       
  Capacitors           

1 C1 1000u lytic  stock $0.00 $0.00 
18 C2,C3,C5,C6,C7,C8,C9,C12, 

C15,C17,C18,C19,C20,C21, 
C22,C23,C24,C25 

0805 100n  stock 

$0.00 $0.00 
1 C4 47u lytic  stock $0.00 $0.00 
4 C10,C11,C13,C14 0805 33p  stock $0.00 $0.00 
1 C16 1u 10V lytic  stock $0.00 $0.00 

       
  Resistors           

4 R1,R4,R7,R13 150R 1/4W TH Axial  Sayal $0.00 $0.20 
4 R2,R5,R8,R14 330R  stock $0.00 $0.00 
4 R3,R6,R9,R15 47R 1/2W TH Axial  Sayal $0.00 $0.40 
2 R10,R12 10K 1/2W TH Axial  Sayal $0.00 $0.10 
3 R11,R24,R33 2k21  stock $0.00 $0.00 
9 R16,R17,R18,R19,R20,R28, 

R29,R30,R31 
500R  stock 

$0.00 $0.00 
1 R21 100K  stock $0.00 $0.00 
5 R22,R23,R25,R26,R27 221R  stock $0.00 $0.00 
1 R32 120R  stock $0.00 $0.00 
1 R34 0R Jumper  stock $0.00 $0.00 

       
  Diodes & Discretes           

8 D1,D2,D3,D4,D5,D7,D8,D16 Power Diode 1N4005 stock $0.00 $0.00 
4 D6,D14,D15,D21 Signal Diode 1N4148 stock $0.00 $0.00 
9 D9,D10,D11,D12,D13,D17, 

D18,D19,D20 
Surface Mount LED  kingbright 

$0.00 $0.00 
4 Q1,Q2,Q3,Q4 Triac BT216X Tech-Trek $0.00 $0.00 
1 Q5 Small signal NPN 2N3904 stock $0.00 $0.00 

       
  Connectors & Misc           

6 J1,J2,J3,J4,J5,J6 Screw Terminal Keystone 7693 EMX $0.00 $0.00 
4 J7,J8,J9,J10 Surface Mount 

Header 
Samtec TSM-105-
01-S-DV 

Samtec 
$0.00 $0.00 

1 K1 Relay DPDT 5V coil 
DIP 

unknown Supremetronic 
$2.50 $0.00 

1 T1 Power Transformer Tamura 3FS-312 Longman Sales $0.00 $0.00 
1 Y1 8MHz crystal 8MHz Sayal $0.00 $1.00 
1 Y2 3.6864MHz crystal 3.6864MHZ Sayal $0.00 $1.00 
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Qty Reference Designators Description MFG & Part No Supplier Est. Price 

       

  Integrated Circuits           
4 U1,U2,U4,U6 Optocoupler Fairchild MOC3011 CSC $0.00 $0.00 
1 U3 Regulator LM7805CT stock $0.00 $0.00 
2 U5,U13 Optocoupler Fairchild 6N138 CSC $0.00 $0.00 
1 U7 Microcontroller Atmel AT90S8515 Clarsand $0.00 $0.00 
1 U8 SPI UART MAX3100xEE Maxim $0.00 $0.00 
1 U9 Quad buffer ON Semi 

74VHC125D 
ON Semi 

$0.00 $0.00 
1 U10 RS232 Level Shifter MAX202 Maxim $0.00 $0.00 
1 U11 Dual 4-1 Mux ON Semi 

74VHC157D 
ON Semi 

$0.00 $0.00 
1 U12 RS485 Level Shifter MAX487 Maxim $0.00 $0.00 

       

  Misc           
1 X1 PLCC Socket Mill-Max 540-99-

044-17-400000 
Mill-Max $0.00 $0.00 

       

    Total Component Expense: $2.50 $2.70 

       

 NOTE: Transformer 3FS-312 from Longman Sales did not arrive in time for the project to be completed; 

 a "wall adaptor" power supply was substituted instead    
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Qty Description MFG / Part No Supplier Est. Price 

      
  Board         

1 PC Board Custom Alberta Printed Circuits $0.00 $125.00 
1 PC Board components Per BOM pg 1  $2.50 $2.70 

      
  Assembly         

1 Power cord  Sayal $1.00 $1.00 
5 1m length of wire (5 colours) T-90 14 gauge Home Depot $2.50 $2.00 

12 Crimp-on screw lugs  Home Depot $2.40 $1.20 
2 Standard receptacles  Home Depot $2.00 $1.00 
1 Electrical box  Home Depot $2.00 $4.00 
1 Electrical faceplate  Home Depot $0.50 $1.50 

      
  Cabinet         

1 Mounting screws 4-40 by 1.5" Student Machine Shop $0.00 $0.00 
1 Aluminum, bottom of case 16 ga 8" x 20" Main Shop $0.00 $0.00 
1 Aluminum, top of case 18 ga 8" x 14" Main Shop $0.00 $0.00 

      

      

   Total Component Expense: $12.90 $138.40 

 Total Component Expense (Excluding PCB): $12.90 $13.40 

 
 


